Algebra Examples

Simplify 1/(1+tan(x)^2)+1/(1+cot(x)^2)
11+tan2(x)+11+cot2(x)
Step 1
Rearrange terms.
1tan2(x)+1+11+cot2(x)
Step 2
Apply pythagorean identity.
1sec2(x)+11+cot2(x)
Step 3
Apply pythagorean identity.
1sec2(x)+1csc2(x)
Step 4
Simplify each term.
Tap for more steps...
Step 4.1
Rewrite 1 as 12.
12sec2(x)+1csc2(x)
Step 4.2
Rewrite 12sec2(x) as (1sec(x))2.
(1sec(x))2+1csc2(x)
Step 4.3
Rewrite sec(x) in terms of sines and cosines.
11cos(x)2+1csc2(x)
Step 4.4
Multiply by the reciprocal of the fraction to divide by 1cos(x).
(1cos(x))2+1csc2(x)
Step 4.5
Multiply cos(x) by 1.
cos2(x)+1csc2(x)
Step 4.6
Rewrite 1 as 12.
cos2(x)+12csc2(x)
Step 4.7
Rewrite 12csc2(x) as (1csc(x))2.
cos2(x)+(1csc(x))2
Step 4.8
Rewrite csc(x) in terms of sines and cosines.
cos2(x)+11sin(x)2
Step 4.9
Multiply by the reciprocal of the fraction to divide by 1sin(x).
cos2(x)+(1sin(x))2
Step 4.10
Multiply sin(x) by 1.
cos2(x)+sin2(x)
cos2(x)+sin2(x)
Step 5
Rearrange terms.
sin2(x)+cos2(x)
Step 6
Apply pythagorean identity.
1
 x2  12  π  xdx