Algebra Examples

Find the x and y Intercepts f(x)=-12 cube root of x
Step 1
Find the x-intercepts.
Tap for more steps...
Step 1.1
To find the x-intercept(s), substitute in for and solve for .
Step 1.2
Solve the equation.
Tap for more steps...
Step 1.2.1
Rewrite the equation as .
Step 1.2.2
To remove the radical on the left side of the equation, cube both sides of the equation.
Step 1.2.3
Simplify each side of the equation.
Tap for more steps...
Step 1.2.3.1
Use to rewrite as .
Step 1.2.3.2
Simplify the left side.
Tap for more steps...
Step 1.2.3.2.1
Simplify .
Tap for more steps...
Step 1.2.3.2.1.1
Apply the product rule to .
Step 1.2.3.2.1.2
Raise to the power of .
Step 1.2.3.2.1.3
Multiply the exponents in .
Tap for more steps...
Step 1.2.3.2.1.3.1
Apply the power rule and multiply exponents, .
Step 1.2.3.2.1.3.2
Cancel the common factor of .
Tap for more steps...
Step 1.2.3.2.1.3.2.1
Cancel the common factor.
Step 1.2.3.2.1.3.2.2
Rewrite the expression.
Step 1.2.3.2.1.4
Simplify.
Step 1.2.3.3
Simplify the right side.
Tap for more steps...
Step 1.2.3.3.1
Raising to any positive power yields .
Step 1.2.4
Divide each term in by and simplify.
Tap for more steps...
Step 1.2.4.1
Divide each term in by .
Step 1.2.4.2
Simplify the left side.
Tap for more steps...
Step 1.2.4.2.1
Cancel the common factor of .
Tap for more steps...
Step 1.2.4.2.1.1
Cancel the common factor.
Step 1.2.4.2.1.2
Divide by .
Step 1.2.4.3
Simplify the right side.
Tap for more steps...
Step 1.2.4.3.1
Divide by .
Step 1.3
x-intercept(s) in point form.
x-intercept(s):
x-intercept(s):
Step 2
Find the y-intercepts.
Tap for more steps...
Step 2.1
To find the y-intercept(s), substitute in for and solve for .
Step 2.2
Simplify .
Tap for more steps...
Step 2.2.1
Remove parentheses.
Step 2.2.2
Rewrite as .
Step 2.2.3
Pull terms out from under the radical, assuming real numbers.
Step 2.2.4
Multiply by .
Step 2.3
y-intercept(s) in point form.
y-intercept(s):
y-intercept(s):
Step 3
List the intersections.
x-intercept(s):
y-intercept(s):
Step 4