Enter a problem...
Algebra Examples
x2+9y2x-3y+6xy3y-xx2+9y2x−3y+6xy3y−x
Step 1
Step 1.1
Factor -1−1 out of 3y3y.
x2+9y2x-3y+6xy-(-3y)-xx2+9y2x−3y+6xy−(−3y)−x
Step 1.2
Factor -1−1 out of -x−x.
x2+9y2x-3y+6xy-(-3y)-(x)x2+9y2x−3y+6xy−(−3y)−(x)
Step 1.3
Factor -1−1 out of -(-3y)-(x)−(−3y)−(x).
x2+9y2x-3y+6xy-(-3y+x)x2+9y2x−3y+6xy−(−3y+x)
Step 1.4
Simplify the expression.
Step 1.4.1
Move a negative from the denominator of 6xy-(-3y+x)6xy−(−3y+x) to the numerator.
x2+9y2x-3y+-(6xy)-3y+xx2+9y2x−3y+−(6xy)−3y+x
Step 1.4.2
Reorder terms.
x2+9y2x-3y+-(6xy)x-3yx2+9y2x−3y+−(6xy)x−3y
x2+9y2x-3y+-(6xy)x-3yx2+9y2x−3y+−(6xy)x−3y
Step 1.5
Combine the numerators over the common denominator.
x2+9y2-(6xy)x-3yx2+9y2−(6xy)x−3y
x2+9y2-(6xy)x-3yx2+9y2−(6xy)x−3y
Step 2
Step 2.1
Rearrange terms.
x2-1⋅6xy+9y2x-3yx2−1⋅6xy+9y2x−3y
Step 2.2
Rewrite 9y29y2 as (3y)2(3y)2.
x2-1⋅6xy+(3y)2x-3yx2−1⋅6xy+(3y)2x−3y
Step 2.3
Check that the middle term is two times the product of the numbers being squared in the first term and third term.
1⋅6xy=2⋅x⋅(3y)1⋅6xy=2⋅x⋅(3y)
Step 2.4
Rewrite the polynomial.
x2-2⋅x⋅(3y)+(3y)2x-3yx2−2⋅x⋅(3y)+(3y)2x−3y
Step 2.5
Factor using the perfect square trinomial rule a2-2ab+b2=(a-b)2a2−2ab+b2=(a−b)2, where a=xa=x and b=3yb=3y.
(x-3y)2x-3y(x−3y)2x−3y
(x-3y)2x-3y(x−3y)2x−3y
Step 3
Step 3.1
Factor x-3yx−3y out of (x-3y)2(x−3y)2.
(x-3y)(x-3y)x-3y(x−3y)(x−3y)x−3y
Step 3.2
Cancel the common factors.
Step 3.2.1
Multiply by 11.
(x-3y)(x-3y)(x-3y)⋅1(x−3y)(x−3y)(x−3y)⋅1
Step 3.2.2
Cancel the common factor.
(x-3y)(x-3y)(x-3y)⋅1
Step 3.2.3
Rewrite the expression.
x-3y1
Step 3.2.4
Divide x-3y by 1.
x-3y
x-3y
x-3y