Enter a problem...
Algebra Examples
√z12=-z6√z12=−z6
Step 1
To remove the radical on the left side of the equation, square both sides of the equation.
√z122=(-z6)2√z122=(−z6)2
Step 2
Step 2.1
Use n√ax=axnn√ax=axn to rewrite √z12√z12 as z122z122.
(z122)2=(-z6)2(z122)2=(−z6)2
Step 2.2
Divide 1212 by 22.
(z6)2=(-z6)2(z6)2=(−z6)2
Step 2.3
Simplify the left side.
Step 2.3.1
Multiply the exponents in (z6)2(z6)2.
Step 2.3.1.1
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
z6⋅2=(-z6)2z6⋅2=(−z6)2
Step 2.3.1.2
Multiply 66 by 22.
z12=(-z6)2z12=(−z6)2
z12=(-z6)2z12=(−z6)2
z12=(-z6)2z12=(−z6)2
Step 2.4
Simplify the right side.
Step 2.4.1
Simplify (-z6)2(−z6)2.
Step 2.4.1.1
Apply the product rule to -z6−z6.
z12=(-1)2(z6)2z12=(−1)2(z6)2
Step 2.4.1.2
Raise -1−1 to the power of 22.
z12=1(z6)2z12=1(z6)2
Step 2.4.1.3
Multiply (z6)2(z6)2 by 11.
z12=(z6)2z12=(z6)2
Step 2.4.1.4
Multiply the exponents in (z6)2(z6)2.
Step 2.4.1.4.1
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
z12=z6⋅2z12=z6⋅2
Step 2.4.1.4.2
Multiply 66 by 22.
z12=z12z12=z12
z12=z12z12=z12
z12=z12z12=z12
z12=z12z12=z12
z12=z12z12=z12
Step 3
Step 3.1
Since the exponents are equal, the bases of the exponents on both sides of the equation must be equal.
|z|=|z||z|=|z|
Step 3.2
Solve for zz.
Step 3.2.1
Rewrite the absolute value equation as four equations without absolute value bars.
z=zz=z
z=-zz=−z
-z=z−z=z
-z=-z−z=−z
Step 3.2.2
After simplifying, there are only two unique equations to be solved.
z=zz=z
z=-zz=−z
Step 3.2.3
Solve z=zz=z for zz.
Step 3.2.3.1
Move all terms containing zz to the left side of the equation.
Step 3.2.3.1.1
Subtract zz from both sides of the equation.
z-z=0z−z=0
Step 3.2.3.1.2
Subtract zz from zz.
0=00=0
0=00=0
Step 3.2.3.2
Since 0=00=0, the equation will always be true.
All real numbers
All real numbers
Step 3.2.4
Solve z=-zz=−z for zz.
Step 3.2.4.1
Move all terms containing zz to the left side of the equation.
Step 3.2.4.1.1
Add zz to both sides of the equation.
z+z=0z+z=0
Step 3.2.4.1.2
Add zz and zz.
2z=02z=0
2z=02z=0
Step 3.2.4.2
Divide each term in 2z=02z=0 by 22 and simplify.
Step 3.2.4.2.1
Divide each term in 2z=02z=0 by 22.
2z2=022z2=02
Step 3.2.4.2.2
Simplify the left side.
Step 3.2.4.2.2.1
Cancel the common factor of 22.
Step 3.2.4.2.2.1.1
Cancel the common factor.
2z2=02
Step 3.2.4.2.2.1.2
Divide z by 1.
z=02
z=02
z=02
Step 3.2.4.2.3
Simplify the right side.
Step 3.2.4.2.3.1
Divide 0 by 2.
z=0
z=0
z=0
z=0
Step 3.2.5
List all of the solutions.
z=0
z=0
z=0