Enter a problem...
Algebra Examples
y=-2(x+5)3y=−2(x+5)3
Step 1
The parent function is the simplest form of the type of function given.
y=x3y=x3
Step 2
Step 2.1
Use the Binomial Theorem.
y=-2(x3+3x2⋅5+3x⋅52+53)y=−2(x3+3x2⋅5+3x⋅52+53)
Step 2.2
Simplify terms.
Step 2.2.1
Simplify each term.
Step 2.2.1.1
Multiply 55 by 33.
y=-2(x3+15x2+3x⋅52+53)y=−2(x3+15x2+3x⋅52+53)
Step 2.2.1.2
Raise 55 to the power of 22.
y=-2(x3+15x2+3x⋅25+53)y=−2(x3+15x2+3x⋅25+53)
Step 2.2.1.3
Multiply 2525 by 33.
y=-2(x3+15x2+75x+53)y=−2(x3+15x2+75x+53)
Step 2.2.1.4
Raise 55 to the power of 33.
y=-2(x3+15x2+75x+125)y=−2(x3+15x2+75x+125)
y=-2(x3+15x2+75x+125)y=−2(x3+15x2+75x+125)
Step 2.2.2
Apply the distributive property.
y=-2x3-2(15x2)-2(75x)-2⋅125y=−2x3−2(15x2)−2(75x)−2⋅125
y=-2x3-2(15x2)-2(75x)-2⋅125y=−2x3−2(15x2)−2(75x)−2⋅125
Step 2.3
Simplify.
Step 2.3.1
Multiply 1515 by -2−2.
y=-2x3-30x2-2(75x)-2⋅125y=−2x3−30x2−2(75x)−2⋅125
Step 2.3.2
Multiply 7575 by -2−2.
y=-2x3-30x2-150x-2⋅125y=−2x3−30x2−150x−2⋅125
Step 2.3.3
Multiply -2−2 by 125125.
y=-2x3-30x2-150x-250y=−2x3−30x2−150x−250
y=-2x3-30x2-150x-250y=−2x3−30x2−150x−250
y=-2x3-30x2-150x-250y=−2x3−30x2−150x−250
Step 3
Assume that y=x3y=x3 is f(x)=x3f(x)=x3 and y=-2(x+5)3y=−2(x+5)3 is g(x)=-2x3-30x2-150x-250g(x)=−2x3−30x2−150x−250.
f(x)=x3f(x)=x3
g(x)=-2x3-30x2-150x-250g(x)=−2x3−30x2−150x−250
Step 4
The transformation being described is from f(x)=x3f(x)=x3 to g(x)=-2x3-30x2-150x-250g(x)=−2x3−30x2−150x−250.
f(x)=x3→g(x)=-2x3-30x2-150x-250f(x)=x3→g(x)=−2x3−30x2−150x−250
Step 5
The horizontal shift depends on the value of hh. The horizontal shift is described as:
g(x)=f(x+h)g(x)=f(x+h) - The graph is shifted to the left hh units.
g(x)=f(x-h)g(x)=f(x−h) - The graph is shifted to the right hh units.
Horizontal Shift: Left 55 Units
Step 6
The vertical shift depends on the value of kk. The vertical shift is described as:
g(x)=f(x)+kg(x)=f(x)+k - The graph is shifted up kk units.
g(x)=f(x)-kg(x)=f(x)−k - The graph is shifted down kk units.
In this case, k=0k=0 which means that the graph is not shifted up or down.
Vertical Shift: None
Step 7
The graph is reflected about the x-axis when g(x)=-f(x)g(x)=−f(x).
Reflection about the x-axis: None
Step 8
The graph is reflected about the y-axis when g(x)=f(-x)g(x)=f(−x).
Reflection about the y-axis: Reflected
Step 9
Compressing and stretching depends on the value of aa.
When aa is greater than 11: Vertically stretched
When aa is between 00 and 11: Vertically compressed
Vertical Compression or Stretch: Stretched
Step 10
Compare and list the transformations.
Parent Function: y=x3y=x3
Horizontal Shift: Left 55 Units
Vertical Shift: None
Reflection about the x-axis: None
Reflection about the y-axis: Reflected
Vertical Compression or Stretch: Stretched
Step 11