Enter a problem...
Algebra Examples
Step 1
To remove the radical on the left side of the inequality, square both sides of the inequality.
Step 2
Step 2.1
Use to rewrite as .
Step 2.2
Simplify the left side.
Step 2.2.1
Simplify .
Step 2.2.1.1
Apply the product rule to .
Step 2.2.1.2
Raise to the power of .
Step 2.2.1.3
Multiply the exponents in .
Step 2.2.1.3.1
Apply the power rule and multiply exponents, .
Step 2.2.1.3.2
Cancel the common factor of .
Step 2.2.1.3.2.1
Cancel the common factor.
Step 2.2.1.3.2.2
Rewrite the expression.
Step 2.2.1.4
Simplify.
Step 2.2.1.5
Apply the distributive property.
Step 2.2.1.6
Multiply by .
Step 2.3
Simplify the right side.
Step 2.3.1
Raise to the power of .
Step 3
Step 3.1
Move all terms not containing to the right side of the inequality.
Step 3.1.1
Add to both sides of the inequality.
Step 3.1.2
Add and .
Step 3.2
Divide each term in by and simplify.
Step 3.2.1
Divide each term in by .
Step 3.2.2
Simplify the left side.
Step 3.2.2.1
Cancel the common factor of .
Step 3.2.2.1.1
Cancel the common factor.
Step 3.2.2.1.2
Divide by .
Step 3.2.3
Simplify the right side.
Step 3.2.3.1
Divide by .
Step 4
Step 4.1
Set the radicand in greater than or equal to to find where the expression is defined.
Step 4.2
Add to both sides of the inequality.
Step 4.3
The domain is all values of that make the expression defined.
Step 5
Use each root to create test intervals.
Step 6
Step 6.1
Test a value on the interval to see if it makes the inequality true.
Step 6.1.1
Choose a value on the interval and see if this value makes the original inequality true.
Step 6.1.2
Replace with in the original inequality.
Step 6.1.3
The left side is not equal to the right side, which means that the given statement is false.
False
False
Step 6.2
Test a value on the interval to see if it makes the inequality true.
Step 6.2.1
Choose a value on the interval and see if this value makes the original inequality true.
Step 6.2.2
Replace with in the original inequality.
Step 6.2.3
The left side is less than the right side , which means that the given statement is always true.
True
True
Step 6.3
Test a value on the interval to see if it makes the inequality true.
Step 6.3.1
Choose a value on the interval and see if this value makes the original inequality true.
Step 6.3.2
Replace with in the original inequality.
Step 6.3.3
The left side is not less than the right side , which means that the given statement is false.
False
False
Step 6.4
Compare the intervals to determine which ones satisfy the original inequality.
False
True
False
False
True
False
Step 7
The solution consists of all of the true intervals.
Step 8
The result can be shown in multiple forms.
Inequality Form:
Interval Notation:
Step 9