Algebra Examples

Evaluate (6 5/6-5 3/8)÷(7/48)
Step 1
Convert to an improper fraction.
Tap for more steps...
Step 1.1
A mixed number is an addition of its whole and fractional parts.
Step 1.2
Add and .
Tap for more steps...
Step 1.2.1
To write as a fraction with a common denominator, multiply by .
Step 1.2.2
Combine and .
Step 1.2.3
Combine the numerators over the common denominator.
Step 1.2.4
Simplify the numerator.
Tap for more steps...
Step 1.2.4.1
Multiply by .
Step 1.2.4.2
Add and .
Step 2
Convert to an improper fraction.
Tap for more steps...
Step 2.1
A mixed number is an addition of its whole and fractional parts.
Step 2.2
Add and .
Tap for more steps...
Step 2.2.1
To write as a fraction with a common denominator, multiply by .
Step 2.2.2
Combine and .
Step 2.2.3
Combine the numerators over the common denominator.
Step 2.2.4
Simplify the numerator.
Tap for more steps...
Step 2.2.4.1
Multiply by .
Step 2.2.4.2
Add and .
Step 3
To divide by a fraction, multiply by its reciprocal.
Step 4
To write as a fraction with a common denominator, multiply by .
Step 5
To write as a fraction with a common denominator, multiply by .
Step 6
Write each expression with a common denominator of , by multiplying each by an appropriate factor of .
Tap for more steps...
Step 6.1
Multiply by .
Step 6.2
Multiply by .
Step 6.3
Multiply by .
Step 6.4
Multiply by .
Step 7
Combine the numerators over the common denominator.
Step 8
Simplify the numerator.
Tap for more steps...
Step 8.1
Multiply by .
Step 8.2
Multiply by .
Step 8.3
Subtract from .
Step 9
Cancel the common factor of .
Tap for more steps...
Step 9.1
Factor out of .
Step 9.2
Cancel the common factor.
Step 9.3
Rewrite the expression.
Step 10
Cancel the common factor of .
Tap for more steps...
Step 10.1
Factor out of .
Step 10.2
Cancel the common factor.
Step 10.3
Rewrite the expression.
Step 11
Multiply by .