Enter a problem...
Algebra Examples
(-x5y5-14x3y2+23x5y-6xy3)÷(-3x2y3)
Step 1
Rewrite the division as a fraction.
-x5y5-14⋅(x3y2)+23⋅(x5y)-6xy3-3x2y3
Step 2
Step 2.1
Factor xy out of -x5y5-14⋅x3y2+23⋅x5y-6xy3.
Step 2.1.1
Factor xy out of -x5y5.
xy(-x4y4)-14⋅x3y2+23⋅x5y-6xy3-3x2y3
Step 2.1.2
Factor xy out of -14⋅x3y2.
xy(-x4y4)+xy(-14⋅x2y)+23⋅x5y-6xy3-3x2y3
Step 2.1.3
Factor xy out of 23⋅x5y.
xy(-x4y4)+xy(-14⋅x2y)+xy(23⋅x4)-6xy3-3x2y3
Step 2.1.4
Factor xy out of -6xy3.
xy(-x4y4)+xy(-14⋅x2y)+xy(23⋅x4)+xy(-6y2)-3x2y3
Step 2.1.5
Factor xy out of xy(-x4y4)+xy(-14⋅x2y).
xy(-x4y4-14⋅x2y)+xy(23⋅x4)+xy(-6y2)-3x2y3
Step 2.1.6
Factor xy out of xy(-x4y4-14⋅x2y)+xy(23⋅x4).
xy(-x4y4-14⋅x2y+23⋅x4)+xy(-6y2)-3x2y3
Step 2.1.7
Factor xy out of xy(-x4y4-14⋅x2y+23⋅x4)+xy(-6y2).
xy(-x4y4-14⋅x2y+23⋅x4-6y2)-3x2y3
xy(-x4y4-14⋅x2y+23⋅x4-6y2)-3x2y3
Step 2.2
Combine exponents.
Step 2.2.1
Combine x2 and 14.
xy(-x4y4-x24y+23⋅x4-6y2)-3x2y3
Step 2.2.2
Combine y and x24.
xy(-x4y4-yx24+23⋅x4-6y2)-3x2y3
Step 2.2.3
Combine 23 and x4.
xy(-x4y4-yx24+2x43-6y2)-3x2y3
xy(-x4y4-yx24+2x43-6y2)-3x2y3
Step 2.3
To write -x4y4 as a fraction with a common denominator, multiply by 44.
xy(-x4y4⋅44-yx24+2x43-6y2)-3x2y3
Step 2.4
Combine -x4y4 and 44.
xy(-x4y4⋅44-yx24+2x43-6y2)-3x2y3
Step 2.5
Combine the numerators over the common denominator.
xy(-x4y4⋅4-yx24+2x43-6y2)-3x2y3
Step 2.6
Simplify the numerator.
Step 2.6.1
Factor x2y out of -x4y4⋅4-yx2.
Step 2.6.1.1
Factor x2y out of -x4y4⋅4.
xy(x2y(-x2y3⋅4)-yx24+2x43-6y2)-3x2y3
Step 2.6.1.2
Factor x2y out of -yx2.
xy(x2y(-x2y3⋅4)+x2y(-1)4+2x43-6y2)-3x2y3
Step 2.6.1.3
Factor x2y out of x2y(-x2y3⋅4)+x2y(-1).
xy(x2y(-x2y3⋅4-1)4+2x43-6y2)-3x2y3
xy(x2y(-x2y3⋅4-1)4+2x43-6y2)-3x2y3
Step 2.6.2
Multiply 4 by -1.
xy(x2y(-4x2y3-1)4+2x43-6y2)-3x2y3
xy(x2y(-4x2y3-1)4+2x43-6y2)-3x2y3
Step 2.7
To write x2y(-4x2y3-1)4 as a fraction with a common denominator, multiply by 33.
xy(x2y(-4x2y3-1)4⋅33+2x43-6y2)-3x2y3
Step 2.8
To write 2x43 as a fraction with a common denominator, multiply by 44.
xy(x2y(-4x2y3-1)4⋅33+2x43⋅44-6y2)-3x2y3
Step 2.9
Write each expression with a common denominator of 12, by multiplying each by an appropriate factor of 1.
Step 2.9.1
Multiply x2y(-4x2y3-1)4 by 33.
xy(x2y(-4x2y3-1)⋅34⋅3+2x43⋅44-6y2)-3x2y3
Step 2.9.2
Multiply 4 by 3.
xy(x2y(-4x2y3-1)⋅312+2x43⋅44-6y2)-3x2y3
Step 2.9.3
Multiply 2x43 by 44.
xy(x2y(-4x2y3-1)⋅312+2x4⋅43⋅4-6y2)-3x2y3
Step 2.9.4
Multiply 3 by 4.
xy(x2y(-4x2y3-1)⋅312+2x4⋅412-6y2)-3x2y3
xy(x2y(-4x2y3-1)⋅312+2x4⋅412-6y2)-3x2y3
Step 2.10
Combine the numerators over the common denominator.
xy(x2y(-4x2y3-1)⋅3+2x4⋅412-6y2)-3x2y3
Step 2.11
Simplify the numerator.
Step 2.11.1
Factor x2 out of x2y(-4x2y3-1)⋅3+2x4⋅4.
Step 2.11.1.1
Factor x2 out of x2y(-4x2y3-1)⋅3.
xy(x2((y(-4x2y3-1))⋅3)+2x4⋅412-6y2)-3x2y3
Step 2.11.1.2
Factor x2 out of 2x4⋅4.
xy(x2((y(-4x2y3-1))⋅3)+x2(2x2⋅4)12-6y2)-3x2y3
Step 2.11.1.3
Factor x2 out of x2((y(-4x2y3-1))⋅3)+x2(2x2⋅4).
xy(x2((y(-4x2y3-1))⋅3+2x2⋅4)12-6y2)-3x2y3
xy(x2((y(-4x2y3-1))⋅3+2x2⋅4)12-6y2)-3x2y3
Step 2.11.2
Apply the distributive property.
xy(x2((y(-4x2y3)+y⋅-1)⋅3+2x2⋅4)12-6y2)-3x2y3
Step 2.11.3
Rewrite using the commutative property of multiplication.
xy(x2((-4y(x2y3)+y⋅-1)⋅3+2x2⋅4)12-6y2)-3x2y3
Step 2.11.4
Move -1 to the left of y.
xy(x2((-4y(x2y3)-1⋅y)⋅3+2x2⋅4)12-6y2)-3x2y3
Step 2.11.5
Simplify each term.
Step 2.11.5.1
Multiply y by y3 by adding the exponents.
Step 2.11.5.1.1
Move y3.
xy(x2((-4(y3y)x2-1⋅y)⋅3+2x2⋅4)12-6y2)-3x2y3
Step 2.11.5.1.2
Multiply y3 by y.
Step 2.11.5.1.2.1
Raise y to the power of 1.
xy(x2((-4(y3y1)x2-1⋅y)⋅3+2x2⋅4)12-6y2)-3x2y3
Step 2.11.5.1.2.2
Use the power rule aman=am+n to combine exponents.
xy(x2((-4y3+1x2-1⋅y)⋅3+2x2⋅4)12-6y2)-3x2y3
xy(x2((-4y3+1x2-1⋅y)⋅3+2x2⋅4)12-6y2)-3x2y3
Step 2.11.5.1.3
Add 3 and 1.
xy(x2((-4y4x2-1⋅y)⋅3+2x2⋅4)12-6y2)-3x2y3
xy(x2((-4y4x2-1⋅y)⋅3+2x2⋅4)12-6y2)-3x2y3
Step 2.11.5.2
Rewrite -1y as -y.
xy(x2((-4y4x2-y)⋅3+2x2⋅4)12-6y2)-3x2y3
xy(x2((-4y4x2-y)⋅3+2x2⋅4)12-6y2)-3x2y3
Step 2.11.6
Apply the distributive property.
xy(x2(-4y4x2⋅3-y⋅3+2x2⋅4)12-6y2)-3x2y3
Step 2.11.7
Multiply 3 by -4.
xy(x2(-12y4x2-y⋅3+2x2⋅4)12-6y2)-3x2y3
Step 2.11.8
Multiply 3 by -1.
xy(x2(-12y4x2-3y+2x2⋅4)12-6y2)-3x2y3
Step 2.11.9
Multiply 4 by 2.
xy(x2(-12y4x2-3y+8x2)12-6y2)-3x2y3
xy(x2(-12y4x2-3y+8x2)12-6y2)-3x2y3
Step 2.12
To write -6y2 as a fraction with a common denominator, multiply by 1212.
xy(x2(-12y4x2-3y+8x2)12-6y2⋅1212)-3x2y3
Step 2.13
Combine -6y2 and 1212.
xy(x2(-12y4x2-3y+8x2)12+-6y2⋅1212)-3x2y3
Step 2.14
Combine the numerators over the common denominator.
xyx2(-12y4x2-3y+8x2)-6y2⋅1212-3x2y3
Step 2.15
Simplify the numerator.
Step 2.15.1
Apply the distributive property.
xyx2(-12y4x2)+x2(-3y)+x2(8x2)-6y2⋅1212-3x2y3
Step 2.15.2
Simplify.
Step 2.15.2.1
Rewrite using the commutative property of multiplication.
xy-12x2(y4x2)+x2(-3y)+x2(8x2)-6y2⋅1212-3x2y3
Step 2.15.2.2
Rewrite using the commutative property of multiplication.
xy-12x2(y4x2)-3x2y+x2(8x2)-6y2⋅1212-3x2y3
Step 2.15.2.3
Rewrite using the commutative property of multiplication.
xy-12x2(y4x2)-3x2y+8x2x2-6y2⋅1212-3x2y3
xy-12x2(y4x2)-3x2y+8x2x2-6y2⋅1212-3x2y3
Step 2.15.3
Simplify each term.
Step 2.15.3.1
Multiply x2 by x2 by adding the exponents.
Step 2.15.3.1.1
Move x2.
xy-12(x2x2)y4-3x2y+8x2x2-6y2⋅1212-3x2y3
Step 2.15.3.1.2
Use the power rule aman=am+n to combine exponents.
xy-12x2+2y4-3x2y+8x2x2-6y2⋅1212-3x2y3
Step 2.15.3.1.3
Add 2 and 2.
xy-12x4y4-3x2y+8x2x2-6y2⋅1212-3x2y3
xy-12x4y4-3x2y+8x2x2-6y2⋅1212-3x2y3
Step 2.15.3.2
Multiply x2 by x2 by adding the exponents.
Step 2.15.3.2.1
Move x2.
xy-12x4y4-3x2y+8(x2x2)-6y2⋅1212-3x2y3
Step 2.15.3.2.2
Use the power rule aman=am+n to combine exponents.
xy-12x4y4-3x2y+8x2+2-6y2⋅1212-3x2y3
Step 2.15.3.2.3
Add 2 and 2.
xy-12x4y4-3x2y+8x4-6y2⋅1212-3x2y3
xy-12x4y4-3x2y+8x4-6y2⋅1212-3x2y3
xy-12x4y4-3x2y+8x4-6y2⋅1212-3x2y3
Step 2.15.4
Multiply 12 by -6.
xy-12x4y4-3x2y+8x4-72y212-3x2y3
xy-12x4y4-3x2y+8x4-72y212-3x2y3
Step 2.16
Combine exponents.
Step 2.16.1
Combine x and -12x4y4-3x2y+8x4-72y212.
yx(-12x4y4-3x2y+8x4-72y2)12-3x2y3
Step 2.16.2
Combine y and x(-12x4y4-3x2y+8x4-72y2)12.
y(x(-12x4y4-3x2y+8x4-72y2))12-3x2y3
y(x(-12x4y4-3x2y+8x4-72y2))12-3x2y3
Step 2.17
Remove unnecessary parentheses.
yx(-12x4y4-3x2y+8x4-72y2)12-3x2y3
yx(-12x4y4-3x2y+8x4-72y2)12-3x2y3
Step 3
Multiply the numerator by the reciprocal of the denominator.
yx(-12x4y4-3x2y+8x4-72y2)12⋅1-3x2y3
Step 4
Combine.
yx(-12x4y4-3x2y+8x4-72y2)⋅112(-3x2y3)
Step 5
Step 5.1
Factor y out of yx(-12x4y4-3x2y+8x4-72y2)⋅1.
y((x(-12x4y4-3x2y+8x4-72y2))⋅1)12(-3x2y3)
Step 5.2
Cancel the common factors.
Step 5.2.1
Factor y out of 12(-3x2y3).
y((x(-12x4y4-3x2y+8x4-72y2))⋅1)y(12(-3x2y2))
Step 5.2.2
Cancel the common factor.
y((x(-12x4y4-3x2y+8x4-72y2))⋅1)y(12(-3x2y2))
Step 5.2.3
Rewrite the expression.
(x(-12x4y4-3x2y+8x4-72y2))⋅112(-3x2y2)
(x(-12x4y4-3x2y+8x4-72y2))⋅112(-3x2y2)
(x(-12x4y4-3x2y+8x4-72y2))⋅112(-3x2y2)
Step 6
Step 6.1
Factor x out of (x(-12x4y4-3x2y+8x4-72y2))⋅1.
x((-12x4y4-3x2y+8x4-72y2)⋅1)12(-3x2y2)
Step 6.2
Cancel the common factors.
Step 6.2.1
Factor x out of 12(-3x2y2).
x((-12x4y4-3x2y+8x4-72y2)⋅1)x(12(-3xy2))
Step 6.2.2
Cancel the common factor.
x((-12x4y4-3x2y+8x4-72y2)⋅1)x(12(-3xy2))
Step 6.2.3
Rewrite the expression.
(-12x4y4-3x2y+8x4-72y2)⋅112(-3xy2)
(-12x4y4-3x2y+8x4-72y2)⋅112(-3xy2)
(-12x4y4-3x2y+8x4-72y2)⋅112(-3xy2)
Step 7
Multiply -12x4y4-3x2y+8x4-72y2 by 1.
-12x4y4-3x2y+8x4-72y212(-3xy2)
Step 8
Multiply -3 by 12.
-12x4y4-3x2y+8x4-72y2-36(xy2)
Step 9
Move the negative in front of the fraction.
--12x4y4-3x2y+8x4-72y236xy2
Step 10
Factor -1 out of -12x4y4.
--(12x4y4)-3x2y+8x4-72y236xy2
Step 11
Factor -1 out of -3x2y.
--(12x4y4)-(3x2y)+8x4-72y236xy2
Step 12
Factor -1 out of -(12x4y4)-(3x2y).
--(12x4y4+3x2y)+8x4-72y236xy2
Step 13
Factor -1 out of 8x4.
--(12x4y4+3x2y)-(-8x4)-72y236xy2
Step 14
Factor -1 out of -(12x4y4+3x2y)-(-8x4).
--(12x4y4+3x2y-8x4)-72y236xy2
Step 15
Factor -1 out of -72y2.
--(12x4y4+3x2y-8x4)-(72y2)36xy2
Step 16
Factor -1 out of -(12x4y4+3x2y-8x4)-(72y2).
--(12x4y4+3x2y-8x4+72y2)36xy2
Step 17
Rewrite -(12x4y4+3x2y-8x4+72y2) as -1(12x4y4+3x2y-8x4+72y2).
--1(12x4y4+3x2y-8x4+72y2)36xy2
Step 18
Move the negative in front of the fraction.
--12x4y4+3x2y-8x4+72y236xy2
Step 19
Multiply -1 by -1.
112x4y4+3x2y-8x4+72y236xy2
Step 20
Multiply 12x4y4+3x2y-8x4+72y236xy2 by 1.
12x4y4+3x2y-8x4+72y236xy2
Step 21
Split the fraction 12x4y4+3x2y-8x4+72y236xy2 into two fractions.
12x4y4+3x2y-8x436xy2+72y236xy2
Step 22
Split the fraction 12x4y4+3x2y-8x436xy2 into two fractions.
12x4y4+3x2y36xy2+-8x436xy2+72y236xy2
Step 23
Split the fraction 12x4y4+3x2y36xy2 into two fractions.
12x4y436xy2+3x2y36xy2+-8x436xy2+72y236xy2
Step 24
Step 24.1
Factor 12 out of 12x4y4.
12(x4y4)36xy2+3x2y36xy2+-8x436xy2+72y236xy2
Step 24.2
Cancel the common factors.
Step 24.2.1
Factor 12 out of 36xy2.
12(x4y4)12(3xy2)+3x2y36xy2+-8x436xy2+72y236xy2
Step 24.2.2
Cancel the common factor.
12(x4y4)12(3xy2)+3x2y36xy2+-8x436xy2+72y236xy2
Step 24.2.3
Rewrite the expression.
x4y43xy2+3x2y36xy2+-8x436xy2+72y236xy2
x4y43xy2+3x2y36xy2+-8x436xy2+72y236xy2
x4y43xy2+3x2y36xy2+-8x436xy2+72y236xy2
Step 25
Step 25.1
Factor x out of x4y4.
x(x3y4)3xy2+3x2y36xy2+-8x436xy2+72y236xy2
Step 25.2
Cancel the common factors.
Step 25.2.1
Factor x out of 3xy2.
x(x3y4)x(3y2)+3x2y36xy2+-8x436xy2+72y236xy2
Step 25.2.2
Cancel the common factor.
x(x3y4)x(3y2)+3x2y36xy2+-8x436xy2+72y236xy2
Step 25.2.3
Rewrite the expression.
x3y43y2+3x2y36xy2+-8x436xy2+72y236xy2
x3y43y2+3x2y36xy2+-8x436xy2+72y236xy2
x3y43y2+3x2y36xy2+-8x436xy2+72y236xy2
Step 26
Step 26.1
Factor y2 out of x3y4.
y2(x3y2)3y2+3x2y36xy2+-8x436xy2+72y236xy2
Step 26.2
Cancel the common factors.
Step 26.2.1
Factor y2 out of 3y2.
y2(x3y2)y2⋅3+3x2y36xy2+-8x436xy2+72y236xy2
Step 26.2.2
Cancel the common factor.
y2(x3y2)y2⋅3+3x2y36xy2+-8x436xy2+72y236xy2
Step 26.2.3
Rewrite the expression.
x3y23+3x2y36xy2+-8x436xy2+72y236xy2
x3y23+3x2y36xy2+-8x436xy2+72y236xy2
x3y23+3x2y36xy2+-8x436xy2+72y236xy2
Step 27
Step 27.1
Factor 3 out of 3x2y.
x3y23+3(x2y)36xy2+-8x436xy2+72y236xy2
Step 27.2
Cancel the common factors.
Step 27.2.1
Factor 3 out of 36xy2.
x3y23+3(x2y)3(12xy2)+-8x436xy2+72y236xy2
Step 27.2.2
Cancel the common factor.
x3y23+3(x2y)3(12xy2)+-8x436xy2+72y236xy2
Step 27.2.3
Rewrite the expression.
x3y23+x2y12xy2+-8x436xy2+72y236xy2
x3y23+x2y12xy2+-8x436xy2+72y236xy2
x3y23+x2y12xy2+-8x436xy2+72y236xy2
Step 28
Step 28.1
Factor x out of x2y.
x3y23+x(xy)12xy2+-8x436xy2+72y236xy2
Step 28.2
Cancel the common factors.
Step 28.2.1
Factor x out of 12xy2.
x3y23+x(xy)x(12y2)+-8x436xy2+72y236xy2
Step 28.2.2
Cancel the common factor.
x3y23+x(xy)x(12y2)+-8x436xy2+72y236xy2
Step 28.2.3
Rewrite the expression.
x3y23+xy12y2+-8x436xy2+72y236xy2
x3y23+xy12y2+-8x436xy2+72y236xy2
x3y23+xy12y2+-8x436xy2+72y236xy2
Step 29
Step 29.1
Factor y out of xy.
x3y23+yx12y2+-8x436xy2+72y236xy2
Step 29.2
Cancel the common factors.
Step 29.2.1
Factor y out of 12y2.
x3y23+yxy(12y)+-8x436xy2+72y236xy2
Step 29.2.2
Cancel the common factor.
x3y23+yxy(12y)+-8x436xy2+72y236xy2
Step 29.2.3
Rewrite the expression.
x3y23+x12y+-8x436xy2+72y236xy2
x3y23+x12y+-8x436xy2+72y236xy2
x3y23+x12y+-8x436xy2+72y236xy2
Step 30
Step 30.1
Factor 4 out of -8x4.
x3y23+x12y+4(-2x4)36xy2+72y236xy2
Step 30.2
Cancel the common factors.
Step 30.2.1
Factor 4 out of 36xy2.
x3y23+x12y+4(-2x4)4(9xy2)+72y236xy2
Step 30.2.2
Cancel the common factor.
x3y23+x12y+4(-2x4)4(9xy2)+72y236xy2
Step 30.2.3
Rewrite the expression.
x3y23+x12y+-2x49xy2+72y236xy2
x3y23+x12y+-2x49xy2+72y236xy2
x3y23+x12y+-2x49xy2+72y236xy2
Step 31
Step 31.1
Factor x out of -2x4.
x3y23+x12y+x(-2x3)9xy2+72y236xy2
Step 31.2
Cancel the common factors.
Step 31.2.1
Factor x out of 9xy2.
x3y23+x12y+x(-2x3)x(9y2)+72y236xy2
Step 31.2.2
Cancel the common factor.
x3y23+x12y+x(-2x3)x(9y2)+72y236xy2
Step 31.2.3
Rewrite the expression.
x3y23+x12y+-2x39y2+72y236xy2
x3y23+x12y+-2x39y2+72y236xy2
x3y23+x12y+-2x39y2+72y236xy2
Step 32
Move the negative in front of the fraction.
x3y23+x12y-2x39y2+72y236xy2
Step 33
Step 33.1
Factor 36 out of 72y2.
x3y23+x12y-2x39y2+36(2y2)36xy2
Step 33.2
Cancel the common factors.
Step 33.2.1
Factor 36 out of 36xy2.
x3y23+x12y-2x39y2+36(2y2)36(xy2)
Step 33.2.2
Cancel the common factor.
x3y23+x12y-2x39y2+36(2y2)36(xy2)
Step 33.2.3
Rewrite the expression.
x3y23+x12y-2x39y2+2y2xy2
x3y23+x12y-2x39y2+2y2xy2
x3y23+x12y-2x39y2+2y2xy2
Step 34
Step 34.1
Cancel the common factor.
x3y23+x12y-2x39y2+2y2xy2
Step 34.2
Rewrite the expression.
x3y23+x12y-2x39y2+2x
x3y23+x12y-2x39y2+2x