Enter a problem...
Algebra Examples
Step 1
Step 1.1
Add to both sides of the equation.
Step 1.2
Subtract from both sides of the equation.
Step 2
Step 2.1
Replace all occurrences of in with .
Step 2.2
Simplify the left side.
Step 2.2.1
Simplify .
Step 2.2.1.1
Simplify each term.
Step 2.2.1.1.1
Apply the distributive property.
Step 2.2.1.1.2
Simplify.
Step 2.2.1.1.2.1
Multiply by .
Step 2.2.1.1.2.2
Multiply by .
Step 2.2.1.1.2.3
Multiply by .
Step 2.2.1.2
Simplify by adding terms.
Step 2.2.1.2.1
Add and .
Step 2.2.1.2.2
Subtract from .
Step 2.3
Replace all occurrences of in with .
Step 2.4
Simplify the left side.
Step 2.4.1
Simplify .
Step 2.4.1.1
Remove parentheses.
Step 2.4.1.2
Add and .
Step 2.4.1.3
Add and .
Step 3
Step 3.1
Move all terms not containing to the right side of the equation.
Step 3.1.1
Subtract from both sides of the equation.
Step 3.1.2
Add to both sides of the equation.
Step 3.1.3
Subtract from .
Step 3.2
Divide each term in by and simplify.
Step 3.2.1
Divide each term in by .
Step 3.2.2
Simplify the left side.
Step 3.2.2.1
Cancel the common factor of .
Step 3.2.2.1.1
Cancel the common factor.
Step 3.2.2.1.2
Divide by .
Step 3.2.3
Simplify the right side.
Step 3.2.3.1
Divide by .
Step 4
Step 4.1
Replace all occurrences of in with .
Step 4.2
Simplify the left side.
Step 4.2.1
Simplify .
Step 4.2.1.1
Simplify each term.
Step 4.2.1.1.1
Apply the distributive property.
Step 4.2.1.1.2
Multiply by .
Step 4.2.1.1.3
Combine and .
Step 4.2.1.2
Add and .
Step 4.2.1.3
To write as a fraction with a common denominator, multiply by .
Step 4.2.1.4
Simplify terms.
Step 4.2.1.4.1
Combine and .
Step 4.2.1.4.2
Combine the numerators over the common denominator.
Step 4.2.1.5
Simplify each term.
Step 4.2.1.5.1
Simplify the numerator.
Step 4.2.1.5.1.1
Factor out of .
Step 4.2.1.5.1.1.1
Factor out of .
Step 4.2.1.5.1.1.2
Factor out of .
Step 4.2.1.5.1.1.3
Factor out of .
Step 4.2.1.5.1.2
Multiply by .
Step 4.2.1.5.1.3
Subtract from .
Step 4.2.1.5.1.4
Multiply by .
Step 4.2.1.5.2
Move the negative in front of the fraction.
Step 4.3
Replace all occurrences of in with .
Step 4.4
Simplify the right side.
Step 4.4.1
Simplify .
Step 4.4.1.1
Simplify each term.
Step 4.4.1.1.1
Apply the distributive property.
Step 4.4.1.1.2
Multiply by .
Step 4.4.1.1.3
Cancel the common factor of .
Step 4.4.1.1.3.1
Factor out of .
Step 4.4.1.1.3.2
Cancel the common factor.
Step 4.4.1.1.3.3
Rewrite the expression.
Step 4.4.1.2
Simplify by adding terms.
Step 4.4.1.2.1
Subtract from .
Step 4.4.1.2.2
Subtract from .
Step 5
Step 5.1
Move all terms not containing to the right side of the equation.
Step 5.1.1
Add to both sides of the equation.
Step 5.1.2
Add and .
Step 5.2
Multiply both sides of the equation by .
Step 5.3
Simplify both sides of the equation.
Step 5.3.1
Simplify the left side.
Step 5.3.1.1
Simplify .
Step 5.3.1.1.1
Cancel the common factor of .
Step 5.3.1.1.1.1
Move the leading negative in into the numerator.
Step 5.3.1.1.1.2
Move the leading negative in into the numerator.
Step 5.3.1.1.1.3
Factor out of .
Step 5.3.1.1.1.4
Cancel the common factor.
Step 5.3.1.1.1.5
Rewrite the expression.
Step 5.3.1.1.2
Cancel the common factor of .
Step 5.3.1.1.2.1
Factor out of .
Step 5.3.1.1.2.2
Cancel the common factor.
Step 5.3.1.1.2.3
Rewrite the expression.
Step 5.3.1.1.3
Multiply.
Step 5.3.1.1.3.1
Multiply by .
Step 5.3.1.1.3.2
Multiply by .
Step 5.3.2
Simplify the right side.
Step 5.3.2.1
Simplify .
Step 5.3.2.1.1
Cancel the common factor of .
Step 5.3.2.1.1.1
Move the leading negative in into the numerator.
Step 5.3.2.1.1.2
Factor out of .
Step 5.3.2.1.1.3
Cancel the common factor.
Step 5.3.2.1.1.4
Rewrite the expression.
Step 5.3.2.1.2
Multiply by .
Step 6
Step 6.1
Replace all occurrences of in with .
Step 6.2
Simplify the right side.
Step 6.2.1
Simplify .
Step 6.2.1.1
Multiply by .
Step 6.2.1.2
Add and .
Step 6.3
Replace all occurrences of in with .
Step 6.4
Simplify the right side.
Step 6.4.1
Simplify .
Step 6.4.1.1
Divide by .
Step 6.4.1.2
Subtract from .
Step 7
The solution to the system is the complete set of ordered pairs that are valid solutions.
Step 8
The result can be shown in multiple forms.
Point Form:
Equation Form: