Algebra Examples

Simplify ((x^-3y^5)/(4^-3))^0
(x-3y54-3)0(x3y543)0
Step 1
Move x-3x3 to the denominator using the negative exponent rule b-n=1bnbn=1bn.
(y54-3x3)0(y543x3)0
Step 2
Move 4-343 to the numerator using the negative exponent rule 1b-n=bn1bn=bn.
(y543x3)0(y543x3)0
Step 3
Raise 44 to the power of 33.
(y564x3)0(y564x3)0
Step 4
Move 6464 to the left of y5y5.
(64y5x3)0(64y5x3)0
Step 5
Use the power rule (ab)n=anbn(ab)n=anbn to distribute the exponent.
Tap for more steps...
Step 5.1
Apply the product rule to 64y5x364y5x3.
(64y5)0(x3)0(64y5)0(x3)0
Step 5.2
Apply the product rule to 64y564y5.
640(y5)0(x3)0640(y5)0(x3)0
640(y5)0(x3)0640(y5)0(x3)0
Step 6
Simplify the numerator.
Tap for more steps...
Step 6.1
Anything raised to 00 is 11.
1(y5)0(x3)01(y5)0(x3)0
Step 6.2
Multiply the exponents in (y5)0(y5)0.
Tap for more steps...
Step 6.2.1
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
1y50(x3)01y50(x3)0
Step 6.2.2
Multiply 55 by 00.
1y0(x3)01y0(x3)0
1y0(x3)01y0(x3)0
Step 6.3
Anything raised to 00 is 11.
11(x3)011(x3)0
Step 6.4
Multiply 11 by 11.
1(x3)01(x3)0
1(x3)01(x3)0
Step 7
Simplify the denominator.
Tap for more steps...
Step 7.1
Multiply the exponents in (x3)0(x3)0.
Tap for more steps...
Step 7.1.1
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
1x301x30
Step 7.1.2
Multiply 33 by 00.
1x01x0
1x01x0
Step 7.2
Anything raised to 00 is 11.
1111
1111
Step 8
Divide 11 by 11.
11
 [x2  12  π  xdx ]  x2  12  π  xdx