Enter a problem...
Algebra Examples
(x-3y54-3)0(x−3y54−3)0
Step 1
Move x-3x−3 to the denominator using the negative exponent rule b-n=1bnb−n=1bn.
(y54-3x3)0(y54−3x3)0
Step 2
Move 4-34−3 to the numerator using the negative exponent rule 1b-n=bn1b−n=bn.
(y5⋅43x3)0(y5⋅43x3)0
Step 3
Raise 44 to the power of 33.
(y5⋅64x3)0(y5⋅64x3)0
Step 4
Move 6464 to the left of y5y5.
(64⋅y5x3)0(64⋅y5x3)0
Step 5
Step 5.1
Apply the product rule to 64y5x364y5x3.
(64y5)0(x3)0(64y5)0(x3)0
Step 5.2
Apply the product rule to 64y564y5.
640(y5)0(x3)0640(y5)0(x3)0
640(y5)0(x3)0640(y5)0(x3)0
Step 6
Step 6.1
Anything raised to 00 is 11.
1(y5)0(x3)01(y5)0(x3)0
Step 6.2
Multiply the exponents in (y5)0(y5)0.
Step 6.2.1
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
1y5⋅0(x3)01y5⋅0(x3)0
Step 6.2.2
Multiply 55 by 00.
1y0(x3)01y0(x3)0
1y0(x3)01y0(x3)0
Step 6.3
Anything raised to 00 is 11.
1⋅1(x3)01⋅1(x3)0
Step 6.4
Multiply 11 by 11.
1(x3)01(x3)0
1(x3)01(x3)0
Step 7
Step 7.1
Multiply the exponents in (x3)0(x3)0.
Step 7.1.1
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
1x3⋅01x3⋅0
Step 7.1.2
Multiply 33 by 00.
1x01x0
1x01x0
Step 7.2
Anything raised to 00 is 11.
1111
1111
Step 8
Divide 11 by 11.
11