Enter a problem...
Algebra Examples
(x2-1)⋅3x-(x2-2)⋅2x(x2−1)⋅3x−(x2−2)⋅2x
Step 1
Step 1.1
Apply the distributive property.
x2(3x)-1(3x)-(x2-2)⋅(2x)x2(3x)−1(3x)−(x2−2)⋅(2x)
Step 1.2
Rewrite using the commutative property of multiplication.
3x2x-1(3x)-(x2-2)⋅(2x)3x2x−1(3x)−(x2−2)⋅(2x)
Step 1.3
Multiply 33 by -1−1.
3x2x-3x-(x2-2)⋅(2x)3x2x−3x−(x2−2)⋅(2x)
Step 1.4
Multiply x2x2 by xx by adding the exponents.
Step 1.4.1
Move xx.
3(x⋅x2)-3x-(x2-2)⋅(2x)3(x⋅x2)−3x−(x2−2)⋅(2x)
Step 1.4.2
Multiply xx by x2x2.
Step 1.4.2.1
Raise xx to the power of 11.
3(x1x2)-3x-(x2-2)⋅(2x)3(x1x2)−3x−(x2−2)⋅(2x)
Step 1.4.2.2
Use the power rule aman=am+naman=am+n to combine exponents.
3x1+2-3x-(x2-2)⋅(2x)3x1+2−3x−(x2−2)⋅(2x)
3x1+2-3x-(x2-2)⋅(2x)3x1+2−3x−(x2−2)⋅(2x)
Step 1.4.3
Add 11 and 22.
3x3-3x-(x2-2)⋅(2x)3x3−3x−(x2−2)⋅(2x)
3x3-3x-(x2-2)⋅(2x)3x3−3x−(x2−2)⋅(2x)
Step 1.5
Apply the distributive property.
3x3-3x+(-x2--2)⋅(2x)3x3−3x+(−x2−−2)⋅(2x)
Step 1.6
Multiply -1−1 by -2−2.
3x3-3x+(-x2+2)⋅(2x)3x3−3x+(−x2+2)⋅(2x)
Step 1.7
Apply the distributive property.
3x3-3x-x2(2x)+2(2x)3x3−3x−x2(2x)+2(2x)
Step 1.8
Rewrite using the commutative property of multiplication.
3x3-3x-1⋅2x2x+2(2x)3x3−3x−1⋅2x2x+2(2x)
Step 1.9
Multiply 22 by 22.
3x3-3x-1⋅2x2x+4x3x3−3x−1⋅2x2x+4x
Step 1.10
Simplify each term.
Step 1.10.1
Multiply x2x2 by xx by adding the exponents.
Step 1.10.1.1
Move xx.
3x3-3x-1⋅2(x⋅x2)+4x3x3−3x−1⋅2(x⋅x2)+4x
Step 1.10.1.2
Multiply xx by x2x2.
Step 1.10.1.2.1
Raise xx to the power of 11.
3x3-3x-1⋅2(x1x2)+4x3x3−3x−1⋅2(x1x2)+4x
Step 1.10.1.2.2
Use the power rule aman=am+naman=am+n to combine exponents.
3x3-3x-1⋅2x1+2+4x3x3−3x−1⋅2x1+2+4x
3x3-3x-1⋅2x1+2+4x3x3−3x−1⋅2x1+2+4x
Step 1.10.1.3
Add 11 and 22.
3x3-3x-1⋅2x3+4x3x3−3x−1⋅2x3+4x
3x3-3x-1⋅2x3+4x3x3−3x−1⋅2x3+4x
Step 1.10.2
Multiply -1−1 by 22.
3x3-3x-2x3+4x3x3−3x−2x3+4x
3x3-3x-2x3+4x3x3−3x−2x3+4x
3x3-3x-2x3+4x3x3−3x−2x3+4x
Step 2
Step 2.1
Subtract 2x32x3 from 3x33x3.
x3-3x+4xx3−3x+4x
Step 2.2
Add -3x−3x and 4x4x.
x3+xx3+x
x3+xx3+x