Enter a problem...
Algebra Examples
1+tan(θ)+1tan(θ)-1+tan(θ)-1tan(θ)1+tan(θ)+1tan(θ)−1+tan(θ)−1tan(θ)
Step 1
Step 1.1
Multiply 1+tan(θ)+1tan(θ)-1+tan(θ)-1tan(θ)1+tan(θ)+1tan(θ)−1+tan(θ)−1tan(θ) by tan(θ)tan(θ)tan(θ)tan(θ).
tan(θ)tan(θ)⋅1+tan(θ)+1tan(θ)-1+tan(θ)-1tan(θ)tan(θ)tan(θ)⋅1+tan(θ)+1tan(θ)−1+tan(θ)−1tan(θ)
Step 1.2
Combine.
tan(θ)(1+tan(θ)+1tan(θ))tan(θ)(-1+tan(θ)-1tan(θ))tan(θ)(1+tan(θ)+1tan(θ))tan(θ)(−1+tan(θ)−1tan(θ))
tan(θ)(1+tan(θ)+1tan(θ))tan(θ)(-1+tan(θ)-1tan(θ))tan(θ)(1+tan(θ)+1tan(θ))tan(θ)(−1+tan(θ)−1tan(θ))
Step 2
Apply the distributive property.
tan(θ)⋅1+tan(θ)tan(θ)+1tan(θ)tan(θ)⋅-1+tan(θ)tan(θ)-1tan(θ)tan(θ)⋅1+tan(θ)tan(θ)+1tan(θ)tan(θ)⋅−1+tan(θ)tan(θ)−1tan(θ)
Step 3
Step 3.1
Cancel the common factor of tan(θ)tan(θ).
Step 3.1.1
Cancel the common factor.
tan(θ)⋅1+tan(θ)tan(θ)+1tan(θ)tan(θ)⋅-1+tan(θ)tan(θ)-1tan(θ)
Step 3.1.2
Rewrite the expression.
tan(θ)⋅1+tan(θ)+1tan(θ)⋅-1+tan(θ)tan(θ)-1tan(θ)
tan(θ)⋅1+tan(θ)+1tan(θ)⋅-1+tan(θ)tan(θ)-1tan(θ)
Step 3.2
Cancel the common factor of tan(θ).
Step 3.2.1
Cancel the common factor.
tan(θ)⋅1+tan(θ)+1tan(θ)⋅-1+tan(θ)tan(θ)-1tan(θ)
Step 3.2.2
Rewrite the expression.
tan(θ)⋅1+tan(θ)+1tan(θ)⋅-1+tan(θ)-1
tan(θ)⋅1+tan(θ)+1tan(θ)⋅-1+tan(θ)-1
tan(θ)⋅1+tan(θ)+1tan(θ)⋅-1+tan(θ)-1
Step 4
Step 4.1
Multiply tan(θ) by 1.
tan(θ)+tan(θ)+1tan(θ)⋅-1+tan(θ)-1
Step 4.2
Add tan(θ) and tan(θ).
2tan(θ)+1tan(θ)⋅-1+tan(θ)-1
2tan(θ)+1tan(θ)⋅-1+tan(θ)-1
Step 5
Step 5.1
Move -1 to the left of tan(θ).
2tan(θ)+1-1⋅tan(θ)+tan(θ)-1
Step 5.2
Rewrite -1tan(θ) as -tan(θ).
2tan(θ)+1-tan(θ)+tan(θ)-1
Step 5.3
Add -tan(θ) and tan(θ).
2tan(θ)+10-1
Step 5.4
Subtract 1 from 0.
2tan(θ)+1-1
2tan(θ)+1-1
Step 6
Step 6.1
Move the negative one from the denominator of 2tan(θ)+1-1.
-1⋅(2tan(θ)+1)
Step 6.2
Apply the distributive property.
-1(2tan(θ))-1⋅1
Step 6.3
Multiply.
Step 6.3.1
Multiply 2 by -1.
-2tan(θ)-1⋅1
Step 6.3.2
Multiply -1 by 1.
-2tan(θ)-1
-2tan(θ)-1
-2tan(θ)-1