Algebra Examples

Simplify (1+(tan(theta)+1)/(tan(theta)))/(-1+(tan(theta)-1)/(tan(theta)))
1+tan(θ)+1tan(θ)-1+tan(θ)-1tan(θ)1+tan(θ)+1tan(θ)1+tan(θ)1tan(θ)
Step 1
Multiply the numerator and denominator of the fraction by tan(θ)tan(θ).
Tap for more steps...
Step 1.1
Multiply 1+tan(θ)+1tan(θ)-1+tan(θ)-1tan(θ)1+tan(θ)+1tan(θ)1+tan(θ)1tan(θ) by tan(θ)tan(θ)tan(θ)tan(θ).
tan(θ)tan(θ)1+tan(θ)+1tan(θ)-1+tan(θ)-1tan(θ)tan(θ)tan(θ)1+tan(θ)+1tan(θ)1+tan(θ)1tan(θ)
Step 1.2
Combine.
tan(θ)(1+tan(θ)+1tan(θ))tan(θ)(-1+tan(θ)-1tan(θ))tan(θ)(1+tan(θ)+1tan(θ))tan(θ)(1+tan(θ)1tan(θ))
tan(θ)(1+tan(θ)+1tan(θ))tan(θ)(-1+tan(θ)-1tan(θ))tan(θ)(1+tan(θ)+1tan(θ))tan(θ)(1+tan(θ)1tan(θ))
Step 2
Apply the distributive property.
tan(θ)1+tan(θ)tan(θ)+1tan(θ)tan(θ)-1+tan(θ)tan(θ)-1tan(θ)tan(θ)1+tan(θ)tan(θ)+1tan(θ)tan(θ)1+tan(θ)tan(θ)1tan(θ)
Step 3
Simplify by cancelling.
Tap for more steps...
Step 3.1
Cancel the common factor of tan(θ)tan(θ).
Tap for more steps...
Step 3.1.1
Cancel the common factor.
tan(θ)1+tan(θ)tan(θ)+1tan(θ)tan(θ)-1+tan(θ)tan(θ)-1tan(θ)
Step 3.1.2
Rewrite the expression.
tan(θ)1+tan(θ)+1tan(θ)-1+tan(θ)tan(θ)-1tan(θ)
tan(θ)1+tan(θ)+1tan(θ)-1+tan(θ)tan(θ)-1tan(θ)
Step 3.2
Cancel the common factor of tan(θ).
Tap for more steps...
Step 3.2.1
Cancel the common factor.
tan(θ)1+tan(θ)+1tan(θ)-1+tan(θ)tan(θ)-1tan(θ)
Step 3.2.2
Rewrite the expression.
tan(θ)1+tan(θ)+1tan(θ)-1+tan(θ)-1
tan(θ)1+tan(θ)+1tan(θ)-1+tan(θ)-1
tan(θ)1+tan(θ)+1tan(θ)-1+tan(θ)-1
Step 4
Simplify the numerator.
Tap for more steps...
Step 4.1
Multiply tan(θ) by 1.
tan(θ)+tan(θ)+1tan(θ)-1+tan(θ)-1
Step 4.2
Add tan(θ) and tan(θ).
2tan(θ)+1tan(θ)-1+tan(θ)-1
2tan(θ)+1tan(θ)-1+tan(θ)-1
Step 5
Simplify the denominator.
Tap for more steps...
Step 5.1
Move -1 to the left of tan(θ).
2tan(θ)+1-1tan(θ)+tan(θ)-1
Step 5.2
Rewrite -1tan(θ) as -tan(θ).
2tan(θ)+1-tan(θ)+tan(θ)-1
Step 5.3
Add -tan(θ) and tan(θ).
2tan(θ)+10-1
Step 5.4
Subtract 1 from 0.
2tan(θ)+1-1
2tan(θ)+1-1
Step 6
Simplify by multiplying through.
Tap for more steps...
Step 6.1
Move the negative one from the denominator of 2tan(θ)+1-1.
-1(2tan(θ)+1)
Step 6.2
Apply the distributive property.
-1(2tan(θ))-11
Step 6.3
Multiply.
Tap for more steps...
Step 6.3.1
Multiply 2 by -1.
-2tan(θ)-11
Step 6.3.2
Multiply -1 by 1.
-2tan(θ)-1
-2tan(θ)-1
-2tan(θ)-1
(
(
)
)
|
|
[
[
]
]
7
7
8
8
9
9
4
4
5
5
6
6
/
/
^
^
×
×
>
>
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
π
π
,
,
0
0
.
.
%
%
=
=
 [x2  12  π  xdx ]