Enter a problem...
Algebra Examples
1-x-32=2-x3+41−x−32=2−x3+4
Step 1
Step 1.1
Combine into one fraction.
Step 1.1.1
Write 11 as a fraction with a common denominator.
22-x-32=2-x3+422−x−32=2−x3+4
Step 1.1.2
Combine the numerators over the common denominator.
2-(x-3)2=2-x3+42−(x−3)2=2−x3+4
2-(x-3)2=2-x3+42−(x−3)2=2−x3+4
Step 1.2
Simplify the numerator.
Step 1.2.1
Apply the distributive property.
2-x--32=2-x3+42−x−−32=2−x3+4
Step 1.2.2
Multiply -1−1 by -3−3.
2-x+32=2-x3+42−x+32=2−x3+4
Step 1.2.3
Add 22 and 33.
-x+52=2-x3+4−x+52=2−x3+4
-x+52=2-x3+4−x+52=2−x3+4
Step 1.3
Simplify with factoring out.
Step 1.3.1
Factor -1−1 out of -x−x.
-(x)+52=2-x3+4−(x)+52=2−x3+4
Step 1.3.2
Rewrite 55 as -1(-5)−1(−5).
-(x)-1(-5)2=2-x3+4−(x)−1(−5)2=2−x3+4
Step 1.3.3
Factor -1−1 out of -(x)-1(-5)−(x)−1(−5).
-(x-5)2=2-x3+4−(x−5)2=2−x3+4
Step 1.3.4
Simplify the expression.
Step 1.3.4.1
Rewrite -(x-5)−(x−5) as -1(x-5)−1(x−5).
-1(x-5)2=2-x3+4−1(x−5)2=2−x3+4
Step 1.3.4.2
Move the negative in front of the fraction.
-x-52=2-x3+4−x−52=2−x3+4
-x-52=2-x3+4−x−52=2−x3+4
-x-52=2-x3+4−x−52=2−x3+4
-x-52=2-x3+4−x−52=2−x3+4
Step 2
Step 2.1
To write 44 as a fraction with a common denominator, multiply by 3333.
-x-52=2-x3+4⋅33−x−52=2−x3+4⋅33
Step 2.2
Simplify terms.
Step 2.2.1
Combine 44 and 3333.
-x-52=2-x3+4⋅33−x−52=2−x3+4⋅33
Step 2.2.2
Combine the numerators over the common denominator.
-x-52=2-x+4⋅33−x−52=2−x+4⋅33
-x-52=2-x+4⋅33−x−52=2−x+4⋅33
Step 2.3
Simplify the numerator.
Step 2.3.1
Multiply 4 by 3.
-x-52=2-x+123
Step 2.3.2
Add 2 and 12.
-x-52=-x+143
-x-52=-x+143
Step 2.4
Simplify with factoring out.
Step 2.4.1
Factor -1 out of -x.
-x-52=-(x)+143
Step 2.4.2
Rewrite 14 as -1(-14).
-x-52=-(x)-1(-14)3
Step 2.4.3
Factor -1 out of -(x)-1(-14).
-x-52=-(x-14)3
Step 2.4.4
Simplify the expression.
Step 2.4.4.1
Rewrite -(x-14) as -1(x-14).
-x-52=-1(x-14)3
Step 2.4.4.2
Move the negative in front of the fraction.
-x-52=-x-143
-x-52=-x-143
-x-52=-x-143
-x-52=-x-143
Step 3
Step 3.1
Add x-143 to both sides of the equation.
-x-52+x-143=0
Step 3.2
To write -x-52 as a fraction with a common denominator, multiply by 33.
-x-52⋅33+x-143=0
Step 3.3
To write x-143 as a fraction with a common denominator, multiply by 22.
-x-52⋅33+x-143⋅22=0
Step 3.4
Write each expression with a common denominator of 6, by multiplying each by an appropriate factor of 1.
Step 3.4.1
Multiply x-52 by 33.
-(x-5)⋅32⋅3+x-143⋅22=0
Step 3.4.2
Multiply 2 by 3.
-(x-5)⋅36+x-143⋅22=0
Step 3.4.3
Multiply x-143 by 22.
-(x-5)⋅36+(x-14)⋅23⋅2=0
Step 3.4.4
Multiply 3 by 2.
-(x-5)⋅36+(x-14)⋅26=0
-(x-5)⋅36+(x-14)⋅26=0
Step 3.5
Combine the numerators over the common denominator.
-(x-5)⋅3+(x-14)⋅26=0
Step 3.6
Simplify the numerator.
Step 3.6.1
Apply the distributive property.
(-x--5)⋅3+(x-14)⋅26=0
Step 3.6.2
Multiply -1 by -5.
(-x+5)⋅3+(x-14)⋅26=0
Step 3.6.3
Apply the distributive property.
-x⋅3+5⋅3+(x-14)⋅26=0
Step 3.6.4
Multiply 3 by -1.
-3x+5⋅3+(x-14)⋅26=0
Step 3.6.5
Multiply 5 by 3.
-3x+15+(x-14)⋅26=0
Step 3.6.6
Apply the distributive property.
-3x+15+x⋅2-14⋅26=0
Step 3.6.7
Move 2 to the left of x.
-3x+15+2⋅x-14⋅26=0
Step 3.6.8
Multiply -14 by 2.
-3x+15+2⋅x-286=0
Step 3.6.9
Add -3x and 2x.
-x+15-286=0
Step 3.6.10
Subtract 28 from 15.
-x-136=0
-x-136=0
Step 3.7
Factor -1 out of -x.
-(x)-136=0
Step 3.8
Rewrite -13 as -1(13).
-(x)-1(13)6=0
Step 3.9
Factor -1 out of -(x)-1(13).
-(x+13)6=0
Step 3.10
Rewrite -(x+13) as -1(x+13).
-1(x+13)6=0
Step 3.11
Move the negative in front of the fraction.
-x+136=0
-x+136=0
Step 4
Set the numerator equal to zero.
x+13=0
Step 5
Subtract 13 from both sides of the equation.
x=-13