Algebra Examples

Solve for x (2(x+9))/3=(3(x+8))/5+88
2(x+9)3=3(x+8)5+882(x+9)3=3(x+8)5+88
Step 1
Multiply both sides by 33.
2(x+9)33=(3(x+8)5+88)32(x+9)33=(3(x+8)5+88)3
Step 2
Simplify.
Tap for more steps...
Step 2.1
Simplify the left side.
Tap for more steps...
Step 2.1.1
Simplify 2(x+9)332(x+9)33.
Tap for more steps...
Step 2.1.1.1
Cancel the common factor of 33.
Tap for more steps...
Step 2.1.1.1.1
Cancel the common factor.
2(x+9)33=(3(x+8)5+88)32(x+9)33=(3(x+8)5+88)3
Step 2.1.1.1.2
Rewrite the expression.
2(x+9)=(3(x+8)5+88)32(x+9)=(3(x+8)5+88)3
2(x+9)=(3(x+8)5+88)32(x+9)=(3(x+8)5+88)3
Step 2.1.1.2
Apply the distributive property.
2x+29=(3(x+8)5+88)32x+29=(3(x+8)5+88)3
Step 2.1.1.3
Multiply 22 by 99.
2x+18=(3(x+8)5+88)32x+18=(3(x+8)5+88)3
2x+18=(3(x+8)5+88)32x+18=(3(x+8)5+88)3
2x+18=(3(x+8)5+88)32x+18=(3(x+8)5+88)3
Step 2.2
Simplify the right side.
Tap for more steps...
Step 2.2.1
Simplify (3(x+8)5+88)3(3(x+8)5+88)3.
Tap for more steps...
Step 2.2.1.1
To write 8888 as a fraction with a common denominator, multiply by 5555.
2x+18=(3(x+8)5+8855)32x+18=(3(x+8)5+8855)3
Step 2.2.1.2
Simplify terms.
Tap for more steps...
Step 2.2.1.2.1
Combine 8888 and 5555.
2x+18=(3(x+8)5+8855)32x+18=(3(x+8)5+8855)3
Step 2.2.1.2.2
Combine the numerators over the common denominator.
2x+18=3(x+8)+885532x+18=3(x+8)+88553
2x+18=3(x+8)+885532x+18=3(x+8)+88553
Step 2.2.1.3
Simplify the numerator.
Tap for more steps...
Step 2.2.1.3.1
Apply the distributive property.
2x+18=3x+38+885532x+18=3x+38+88553
Step 2.2.1.3.2
Multiply 3 by 8.
2x+18=3x+24+88553
Step 2.2.1.3.3
Multiply 88 by 5.
2x+18=3x+24+44053
Step 2.2.1.3.4
Add 24 and 440.
2x+18=3x+46453
2x+18=3x+46453
Step 2.2.1.4
Combine fractions.
Tap for more steps...
Step 2.2.1.4.1
Combine 3x+4645 and 3.
2x+18=(3x+464)35
Step 2.2.1.4.2
Move 3 to the left of 3x+464.
2x+18=3(3x+464)5
2x+18=3(3x+464)5
2x+18=3(3x+464)5
2x+18=3(3x+464)5
2x+18=3(3x+464)5
Step 3
Solve for x.
Tap for more steps...
Step 3.1
Multiply both sides by 5.
(2x+18)5=3(3x+464)55
Step 3.2
Simplify.
Tap for more steps...
Step 3.2.1
Simplify the left side.
Tap for more steps...
Step 3.2.1.1
Simplify (2x+18)5.
Tap for more steps...
Step 3.2.1.1.1
Apply the distributive property.
2x5+185=3(3x+464)55
Step 3.2.1.1.2
Multiply.
Tap for more steps...
Step 3.2.1.1.2.1
Multiply 5 by 2.
10x+185=3(3x+464)55
Step 3.2.1.1.2.2
Multiply 18 by 5.
10x+90=3(3x+464)55
10x+90=3(3x+464)55
10x+90=3(3x+464)55
10x+90=3(3x+464)55
Step 3.2.2
Simplify the right side.
Tap for more steps...
Step 3.2.2.1
Simplify 3(3x+464)55.
Tap for more steps...
Step 3.2.2.1.1
Cancel the common factor of 5.
Tap for more steps...
Step 3.2.2.1.1.1
Cancel the common factor.
10x+90=3(3x+464)55
Step 3.2.2.1.1.2
Rewrite the expression.
10x+90=3(3x+464)
10x+90=3(3x+464)
Step 3.2.2.1.2
Apply the distributive property.
10x+90=3(3x)+3464
Step 3.2.2.1.3
Multiply.
Tap for more steps...
Step 3.2.2.1.3.1
Multiply 3 by 3.
10x+90=9x+3464
Step 3.2.2.1.3.2
Multiply 3 by 464.
10x+90=9x+1392
10x+90=9x+1392
10x+90=9x+1392
10x+90=9x+1392
10x+90=9x+1392
Step 3.3
Solve for x.
Tap for more steps...
Step 3.3.1
Move all terms containing x to the left side of the equation.
Tap for more steps...
Step 3.3.1.1
Subtract 9x from both sides of the equation.
10x+90-9x=1392
Step 3.3.1.2
Subtract 9x from 10x.
x+90=1392
x+90=1392
Step 3.3.2
Move all terms not containing x to the right side of the equation.
Tap for more steps...
Step 3.3.2.1
Subtract 90 from both sides of the equation.
x=1392-90
Step 3.3.2.2
Subtract 90 from 1392.
x=1302
x=1302
x=1302
x=1302
 [x2  12  π  xdx ]