Algebra Examples

Solve for v 3+v=2(2v-1)
3+v=2(2v-1)3+v=2(2v1)
Step 1
Simplify 2(2v-1)2(2v1).
Tap for more steps...
Step 1.1
Rewrite.
3+v=0+0+2(2v-1)3+v=0+0+2(2v1)
Step 1.2
Simplify by adding zeros.
3+v=2(2v-1)3+v=2(2v1)
Step 1.3
Apply the distributive property.
3+v=2(2v)+2-13+v=2(2v)+21
Step 1.4
Multiply.
Tap for more steps...
Step 1.4.1
Multiply 22 by 22.
3+v=4v+2-13+v=4v+21
Step 1.4.2
Multiply 22 by -11.
3+v=4v-23+v=4v2
3+v=4v-23+v=4v2
3+v=4v-23+v=4v2
Step 2
Move all terms containing vv to the left side of the equation.
Tap for more steps...
Step 2.1
Subtract 4v4v from both sides of the equation.
3+v-4v=-23+v4v=2
Step 2.2
Subtract 4v4v from vv.
3-3v=-233v=2
3-3v=-233v=2
Step 3
Move all terms not containing vv to the right side of the equation.
Tap for more steps...
Step 3.1
Subtract 33 from both sides of the equation.
-3v=-2-33v=23
Step 3.2
Subtract 33 from -22.
-3v=-53v=5
-3v=-53v=5
Step 4
Divide each term in -3v=-53v=5 by -33 and simplify.
Tap for more steps...
Step 4.1
Divide each term in -3v=-53v=5 by -33.
-3v-3=-5-33v3=53
Step 4.2
Simplify the left side.
Tap for more steps...
Step 4.2.1
Cancel the common factor of -33.
Tap for more steps...
Step 4.2.1.1
Cancel the common factor.
-3v-3=-5-3
Step 4.2.1.2
Divide v by 1.
v=-5-3
v=-5-3
v=-5-3
Step 4.3
Simplify the right side.
Tap for more steps...
Step 4.3.1
Dividing two negative values results in a positive value.
v=53
v=53
v=53
Step 5
The result can be shown in multiple forms.
Exact Form:
v=53
Decimal Form:
v=1.6
Mixed Number Form:
v=123
 [x2  12  π  xdx ]