Enter a problem...
Algebra Examples
3+v=2(2v-1)3+v=2(2v−1)
Step 1
Step 1.1
Rewrite.
3+v=0+0+2(2v-1)3+v=0+0+2(2v−1)
Step 1.2
Simplify by adding zeros.
3+v=2(2v-1)3+v=2(2v−1)
Step 1.3
Apply the distributive property.
3+v=2(2v)+2⋅-13+v=2(2v)+2⋅−1
Step 1.4
Multiply.
Step 1.4.1
Multiply 22 by 22.
3+v=4v+2⋅-13+v=4v+2⋅−1
Step 1.4.2
Multiply 22 by -1−1.
3+v=4v-23+v=4v−2
3+v=4v-23+v=4v−2
3+v=4v-23+v=4v−2
Step 2
Step 2.1
Subtract 4v4v from both sides of the equation.
3+v-4v=-23+v−4v=−2
Step 2.2
Subtract 4v4v from vv.
3-3v=-23−3v=−2
3-3v=-23−3v=−2
Step 3
Step 3.1
Subtract 33 from both sides of the equation.
-3v=-2-3−3v=−2−3
Step 3.2
Subtract 33 from -2−2.
-3v=-5−3v=−5
-3v=-5−3v=−5
Step 4
Step 4.1
Divide each term in -3v=-5−3v=−5 by -3−3.
-3v-3=-5-3−3v−3=−5−3
Step 4.2
Simplify the left side.
Step 4.2.1
Cancel the common factor of -3−3.
Step 4.2.1.1
Cancel the common factor.
-3v-3=-5-3
Step 4.2.1.2
Divide v by 1.
v=-5-3
v=-5-3
v=-5-3
Step 4.3
Simplify the right side.
Step 4.3.1
Dividing two negative values results in a positive value.
v=53
v=53
v=53
Step 5
The result can be shown in multiple forms.
Exact Form:
v=53
Decimal Form:
v=1.‾6
Mixed Number Form:
v=123