Algebra Examples

Solve for z natural log of 63 = natural log of z+ natural log of 7
ln(63)=ln(z)+ln(7)ln(63)=ln(z)+ln(7)
Step 1
Rewrite the equation as ln(z)+ln(7)=ln(63)ln(z)+ln(7)=ln(63).
ln(z)+ln(7)=ln(63)ln(z)+ln(7)=ln(63)
Step 2
Simplify the left side.
Tap for more steps...
Step 2.1
Use the product property of logarithms, logb(x)+logb(y)=logb(xy)logb(x)+logb(y)=logb(xy).
ln(z7)=ln(63)ln(z7)=ln(63)
Step 2.2
Move 77 to the left of zz.
ln(7z)=ln(63)ln(7z)=ln(63)
ln(7z)=ln(63)ln(7z)=ln(63)
Step 3
For the equation to be equal, the argument of the logarithms on both sides of the equation must be equal.
7z=637z=63
Step 4
Divide each term in 7z=637z=63 by 77 and simplify.
Tap for more steps...
Step 4.1
Divide each term in 7z=637z=63 by 77.
7z7=6377z7=637
Step 4.2
Simplify the left side.
Tap for more steps...
Step 4.2.1
Cancel the common factor of 77.
Tap for more steps...
Step 4.2.1.1
Cancel the common factor.
7z7=637
Step 4.2.1.2
Divide z by 1.
z=637
z=637
z=637
Step 4.3
Simplify the right side.
Tap for more steps...
Step 4.3.1
Divide 63 by 7.
z=9
z=9
z=9
 [x2  12  π  xdx ]