Algebra Examples

Graph A(x)=-x(x-80)
A(x)=-x(x-80)
Step 1
Find the properties of the given parabola.
Tap for more steps...
Step 1.1
Rewrite the equation in vertex form.
Tap for more steps...
Step 1.1.1
Simplify -x(x-80).
Tap for more steps...
Step 1.1.1.1
Apply the distributive property.
y=-xx-x-80
Step 1.1.1.2
Multiply x by x by adding the exponents.
Tap for more steps...
Step 1.1.1.2.1
Move x.
y=-(xx)-x-80
Step 1.1.1.2.2
Multiply x by x.
y=-x2-x-80
y=-x2-x-80
Step 1.1.1.3
Multiply -80 by -1.
y=-x2+80x
y=-x2+80x
Step 1.1.2
Complete the square for -x2+80x.
Tap for more steps...
Step 1.1.2.1
Use the form ax2+bx+c, to find the values of a, b, and c.
a=-1
b=80
c=0
Step 1.1.2.2
Consider the vertex form of a parabola.
a(x+d)2+e
Step 1.1.2.3
Find the value of d using the formula d=b2a.
Tap for more steps...
Step 1.1.2.3.1
Substitute the values of a and b into the formula d=b2a.
d=802-1
Step 1.1.2.3.2
Simplify the right side.
Tap for more steps...
Step 1.1.2.3.2.1
Cancel the common factor of 80 and 2.
Tap for more steps...
Step 1.1.2.3.2.1.1
Factor 2 out of 80.
d=2402-1
Step 1.1.2.3.2.1.2
Move the negative one from the denominator of 40-1.
d=-140
d=-140
Step 1.1.2.3.2.2
Multiply -1 by 40.
d=-40
d=-40
d=-40
Step 1.1.2.4
Find the value of e using the formula e=c-b24a.
Tap for more steps...
Step 1.1.2.4.1
Substitute the values of c, b and a into the formula e=c-b24a.
e=0-8024-1
Step 1.1.2.4.2
Simplify the right side.
Tap for more steps...
Step 1.1.2.4.2.1
Simplify each term.
Tap for more steps...
Step 1.1.2.4.2.1.1
Raise 80 to the power of 2.
e=0-64004-1
Step 1.1.2.4.2.1.2
Multiply 4 by -1.
e=0-6400-4
Step 1.1.2.4.2.1.3
Divide 6400 by -4.
e=0--1600
Step 1.1.2.4.2.1.4
Multiply -1 by -1600.
e=0+1600
e=0+1600
Step 1.1.2.4.2.2
Add 0 and 1600.
e=1600
e=1600
e=1600
Step 1.1.2.5
Substitute the values of a, d, and e into the vertex form -(x-40)2+1600.
-(x-40)2+1600
-(x-40)2+1600
Step 1.1.3
Set y equal to the new right side.
y=-(x-40)2+1600
y=-(x-40)2+1600
Step 1.2
Use the vertex form, y=a(x-h)2+k, to determine the values of a, h, and k.
a=-1
h=40
k=1600
Step 1.3
Since the value of a is negative, the parabola opens down.
Opens Down
Step 1.4
Find the vertex (h,k).
(40,1600)
Step 1.5
Find p, the distance from the vertex to the focus.
Tap for more steps...
Step 1.5.1
Find the distance from the vertex to a focus of the parabola by using the following formula.
14a
Step 1.5.2
Substitute the value of a into the formula.
14-1
Step 1.5.3
Cancel the common factor of 1 and -1.
Tap for more steps...
Step 1.5.3.1
Rewrite 1 as -1(-1).
-1(-1)4-1
Step 1.5.3.2
Move the negative in front of the fraction.
-14
-14
-14
Step 1.6
Find the focus.
Tap for more steps...
Step 1.6.1
The focus of a parabola can be found by adding p to the y-coordinate k if the parabola opens up or down.
(h,k+p)
Step 1.6.2
Substitute the known values of h, p, and k into the formula and simplify.
(40,63994)
(40,63994)
Step 1.7
Find the axis of symmetry by finding the line that passes through the vertex and the focus.
x=40
Step 1.8
Find the directrix.
Tap for more steps...
Step 1.8.1
The directrix of a parabola is the horizontal line found by subtracting p from the y-coordinate k of the vertex if the parabola opens up or down.
y=k-p
Step 1.8.2
Substitute the known values of p and k into the formula and simplify.
y=64014
y=64014
Step 1.9
Use the properties of the parabola to analyze and graph the parabola.
Direction: Opens Down
Vertex: (40,1600)
Focus: (40,63994)
Axis of Symmetry: x=40
Directrix: y=64014
Direction: Opens Down
Vertex: (40,1600)
Focus: (40,63994)
Axis of Symmetry: x=40
Directrix: y=64014
Step 2
Select a few x values, and plug them into the equation to find the corresponding y values. The x values should be selected around the vertex.
Tap for more steps...
Step 2.1
Replace the variable x with 39 in the expression.
f(39)=-(39)2+80(39)
Step 2.2
Simplify the result.
Tap for more steps...
Step 2.2.1
Simplify each term.
Tap for more steps...
Step 2.2.1.1
Raise 39 to the power of 2.
f(39)=-11521+80(39)
Step 2.2.1.2
Multiply -1 by 1521.
f(39)=-1521+80(39)
Step 2.2.1.3
Multiply 80 by 39.
f(39)=-1521+3120
f(39)=-1521+3120
Step 2.2.2
Add -1521 and 3120.
f(39)=1599
Step 2.2.3
The final answer is 1599.
1599
1599
Step 2.3
The y value at x=39 is 1599.
y=1599
Step 2.4
Replace the variable x with 38 in the expression.
f(38)=-(38)2+80(38)
Step 2.5
Simplify the result.
Tap for more steps...
Step 2.5.1
Simplify each term.
Tap for more steps...
Step 2.5.1.1
Raise 38 to the power of 2.
f(38)=-11444+80(38)
Step 2.5.1.2
Multiply -1 by 1444.
f(38)=-1444+80(38)
Step 2.5.1.3
Multiply 80 by 38.
f(38)=-1444+3040
f(38)=-1444+3040
Step 2.5.2
Add -1444 and 3040.
f(38)=1596
Step 2.5.3
The final answer is 1596.
1596
1596
Step 2.6
The y value at x=38 is 1596.
y=1596
Step 2.7
Replace the variable x with 41 in the expression.
f(41)=-(41)2+80(41)
Step 2.8
Simplify the result.
Tap for more steps...
Step 2.8.1
Simplify each term.
Tap for more steps...
Step 2.8.1.1
Raise 41 to the power of 2.
f(41)=-11681+80(41)
Step 2.8.1.2
Multiply -1 by 1681.
f(41)=-1681+80(41)
Step 2.8.1.3
Multiply 80 by 41.
f(41)=-1681+3280
f(41)=-1681+3280
Step 2.8.2
Add -1681 and 3280.
f(41)=1599
Step 2.8.3
The final answer is 1599.
1599
1599
Step 2.9
The y value at x=41 is 1599.
y=1599
Step 2.10
Replace the variable x with 42 in the expression.
f(42)=-(42)2+80(42)
Step 2.11
Simplify the result.
Tap for more steps...
Step 2.11.1
Simplify each term.
Tap for more steps...
Step 2.11.1.1
Raise 42 to the power of 2.
f(42)=-11764+80(42)
Step 2.11.1.2
Multiply -1 by 1764.
f(42)=-1764+80(42)
Step 2.11.1.3
Multiply 80 by 42.
f(42)=-1764+3360
f(42)=-1764+3360
Step 2.11.2
Add -1764 and 3360.
f(42)=1596
Step 2.11.3
The final answer is 1596.
1596
1596
Step 2.12
The y value at x=42 is 1596.
y=1596
Step 2.13
Graph the parabola using its properties and the selected points.
xy381596391599401600411599421596
xy381596391599401600411599421596
Step 3
Graph the parabola using its properties and the selected points.
Direction: Opens Down
Vertex: (40,1600)
Focus: (40,63994)
Axis of Symmetry: x=40
Directrix: y=64014
xy381596391599401600411599421596
Step 4
image of graph
A(x)=-x(x-80)
(
(
)
)
|
|
[
[
]
]
7
7
8
8
9
9
4
4
5
5
6
6
/
/
^
^
×
×
>
>
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
π
π
,
,
0
0
.
.
%
%
=
=
 [x2  12  π  xdx ]