Algebra Examples

Solve for j 5(4/5j+2)=3-6j
5(45j+2)=3-6j5(45j+2)=36j
Step 1
Simplify 5(45j+2)5(45j+2).
Tap for more steps...
Step 1.1
Rewrite.
0+0+5(45j+2)=3-6j0+0+5(45j+2)=36j
Step 1.2
Simplify by adding zeros.
5(45j+2)=3-6j5(45j+2)=36j
Step 1.3
Combine 4545 and jj.
5(4j5+2)=3-6j5(4j5+2)=36j
Step 1.4
Apply the distributive property.
54j5+52=3-6j54j5+52=36j
Step 1.5
Cancel the common factor of 55.
Tap for more steps...
Step 1.5.1
Cancel the common factor.
54j5+52=3-6j
Step 1.5.2
Rewrite the expression.
4j+52=3-6j
4j+52=3-6j
Step 1.6
Multiply 5 by 2.
4j+10=3-6j
4j+10=3-6j
Step 2
Move all terms containing j to the left side of the equation.
Tap for more steps...
Step 2.1
Add 6j to both sides of the equation.
4j+10+6j=3
Step 2.2
Add 4j and 6j.
10j+10=3
10j+10=3
Step 3
Move all terms not containing j to the right side of the equation.
Tap for more steps...
Step 3.1
Subtract 10 from both sides of the equation.
10j=3-10
Step 3.2
Subtract 10 from 3.
10j=-7
10j=-7
Step 4
Divide each term in 10j=-7 by 10 and simplify.
Tap for more steps...
Step 4.1
Divide each term in 10j=-7 by 10.
10j10=-710
Step 4.2
Simplify the left side.
Tap for more steps...
Step 4.2.1
Cancel the common factor of 10.
Tap for more steps...
Step 4.2.1.1
Cancel the common factor.
10j10=-710
Step 4.2.1.2
Divide j by 1.
j=-710
j=-710
j=-710
Step 4.3
Simplify the right side.
Tap for more steps...
Step 4.3.1
Move the negative in front of the fraction.
j=-710
j=-710
j=-710
Step 5
The result can be shown in multiple forms.
Exact Form:
j=-710
Decimal Form:
j=-0.7
 [x2  12  π  xdx ]