Algebra Examples

Solve for c 5c+4=2(c-5)
5c+4=2(c-5)5c+4=2(c5)
Step 1
Simplify 2(c-5)2(c5).
Tap for more steps...
Step 1.1
Rewrite.
5c+4=0+0+2(c-5)5c+4=0+0+2(c5)
Step 1.2
Simplify by adding zeros.
5c+4=2(c-5)5c+4=2(c5)
Step 1.3
Apply the distributive property.
5c+4=2c+2-55c+4=2c+25
Step 1.4
Multiply 22 by -55.
5c+4=2c-105c+4=2c10
5c+4=2c-105c+4=2c10
Step 2
Move all terms containing cc to the left side of the equation.
Tap for more steps...
Step 2.1
Subtract 2c2c from both sides of the equation.
5c+4-2c=-105c+42c=10
Step 2.2
Subtract 2c2c from 5c5c.
3c+4=-103c+4=10
3c+4=-103c+4=10
Step 3
Move all terms not containing cc to the right side of the equation.
Tap for more steps...
Step 3.1
Subtract 44 from both sides of the equation.
3c=-10-43c=104
Step 3.2
Subtract 44 from -1010.
3c=-143c=14
3c=-143c=14
Step 4
Divide each term in 3c=-143c=14 by 33 and simplify.
Tap for more steps...
Step 4.1
Divide each term in 3c=-143c=14 by 33.
3c3=-1433c3=143
Step 4.2
Simplify the left side.
Tap for more steps...
Step 4.2.1
Cancel the common factor of 33.
Tap for more steps...
Step 4.2.1.1
Cancel the common factor.
3c3=-143
Step 4.2.1.2
Divide c by 1.
c=-143
c=-143
c=-143
Step 4.3
Simplify the right side.
Tap for more steps...
Step 4.3.1
Move the negative in front of the fraction.
c=-143
c=-143
c=-143
Step 5
The result can be shown in multiple forms.
Exact Form:
c=-143
Decimal Form:
c=-4.6
Mixed Number Form:
c=-423
 [x2  12  π  xdx ]