Trigonometri Contoh

Selesaikan untuk x csc(x)^2-csc(x)-2=0
Langkah 1
Faktorkan sisi kiri persamaannya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Biarkan . Masukkan untuk semua kejadian .
Langkah 1.2
Faktorkan menggunakan metode AC.
Ketuk untuk lebih banyak langkah...
Langkah 1.2.1
Mempertimbangkan bentuk . Tentukan pasangan bilangan bulat yang hasil kalinya (Variabel1) dan jumlahnya . Dalam hal ini, hasil kalinya dan jumlahnya .
Langkah 1.2.2
Tulis bentuk yang difaktorkan menggunakan bilangan bulat ini.
Langkah 1.3
Ganti semua kemunculan dengan .
Langkah 2
Jika faktor individu di sisi kiri persamaan sama dengan , seluruh pernyataan akan menjadi sama dengan .
Langkah 3
Atur agar sama dengan dan selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 3.1
Atur sama dengan .
Langkah 3.2
Selesaikan untuk .
Ketuk untuk lebih banyak langkah...
Langkah 3.2.1
Tambahkan ke kedua sisi persamaan.
Langkah 3.2.2
Ambil kosekan balikan dari kedua sisi persamaan untuk mendapatkan dari dalam kosekan.
Langkah 3.2.3
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 3.2.3.1
Nilai eksak dari adalah .
Langkah 3.2.4
Fungsi kosekan positif di kuadran pertama dan kedua. Untuk menghitung penyelesaian kedua, kurangi sudut acuan dari untuk mencari penyelesaian di kuadran kedua.
Langkah 3.2.5
Sederhanakan .
Ketuk untuk lebih banyak langkah...
Langkah 3.2.5.1
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 3.2.5.2
Gabungkan pecahan.
Ketuk untuk lebih banyak langkah...
Langkah 3.2.5.2.1
Gabungkan dan .
Langkah 3.2.5.2.2
Gabungkan pembilang dari penyebut persekutuan.
Langkah 3.2.5.3
Sederhanakan pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 3.2.5.3.1
Pindahkan ke sebelah kiri .
Langkah 3.2.5.3.2
Kurangi dengan .
Langkah 3.2.6
Tentukan periode dari .
Ketuk untuk lebih banyak langkah...
Langkah 3.2.6.1
Periode fungsi dapat dihitung menggunakan .
Langkah 3.2.6.2
Ganti dengan dalam rumus untuk periode.
Langkah 3.2.6.3
Nilai mutlak adalah jarak antara sebuah bilangan dan nol. Jarak antara dan adalah .
Langkah 3.2.6.4
Bagilah dengan .
Langkah 3.2.7
Periode dari fungsi adalah sehingga nilai-nilai akan berulang setiap radian di kedua arah.
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat
Langkah 4
Atur agar sama dengan dan selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 4.1
Atur sama dengan .
Langkah 4.2
Selesaikan untuk .
Ketuk untuk lebih banyak langkah...
Langkah 4.2.1
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 4.2.2
Ambil kosekan balikan dari kedua sisi persamaan untuk mendapatkan dari dalam kosekan.
Langkah 4.2.3
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 4.2.3.1
Nilai eksak dari adalah .
Langkah 4.2.4
The cosecant function is negative in the third and fourth quadrants. To find the second solution, subtract the solution from , to find a reference angle. Next, add this reference angle to to find the solution in the third quadrant.
Langkah 4.2.5
Sederhanakan pernyataan untuk menentukan penyelesaian yang kedua.
Ketuk untuk lebih banyak langkah...
Langkah 4.2.5.1
Kurangi dengan .
Langkah 4.2.5.2
Sudut yang dihasilkan dari positif, lebih kecil dari , dan koterminal dengan .
Langkah 4.2.6
Tentukan periode dari .
Ketuk untuk lebih banyak langkah...
Langkah 4.2.6.1
Periode fungsi dapat dihitung menggunakan .
Langkah 4.2.6.2
Ganti dengan dalam rumus untuk periode.
Langkah 4.2.6.3
Nilai mutlak adalah jarak antara sebuah bilangan dan nol. Jarak antara dan adalah .
Langkah 4.2.6.4
Bagilah dengan .
Langkah 4.2.7
Tambahkan ke setiap sudut negatif untuk memperoleh sudut positif.
Ketuk untuk lebih banyak langkah...
Langkah 4.2.7.1
Tambahkan ke untuk menentukan sudut positif.
Langkah 4.2.7.2
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 4.2.7.3
Gabungkan pecahan.
Ketuk untuk lebih banyak langkah...
Langkah 4.2.7.3.1
Gabungkan dan .
Langkah 4.2.7.3.2
Gabungkan pembilang dari penyebut persekutuan.
Langkah 4.2.7.4
Sederhanakan pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 4.2.7.4.1
Kalikan dengan .
Langkah 4.2.7.4.2
Kurangi dengan .
Langkah 4.2.7.5
Sebutkan sudut-sudut barunya.
Langkah 4.2.8
Periode dari fungsi adalah sehingga nilai-nilai akan berulang setiap radian di kedua arah.
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat
Langkah 5
Penyelesaian akhirnya adalah semua nilai yang membuat benar.
, untuk sebarang bilangan bulat
Langkah 6
Gabungkan jawabannya.
, untuk sebarang bilangan bulat