Trigonometri Contoh

Selesaikan untuk x (12/13)^2+cos(x)^2=1
Langkah 1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Terapkan kaidah hasil kali ke .
Langkah 1.2
Naikkan menjadi pangkat .
Langkah 1.3
Naikkan menjadi pangkat .
Langkah 2
Pindahkan semua suku yang tidak mengandung ke sisi kanan dari persamaan.
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 2.2
Tuliskan sebagai pecahan dengan penyebut persekutuan.
Langkah 2.3
Gabungkan pembilang dari penyebut persekutuan.
Langkah 2.4
Kurangi dengan .
Langkah 3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Langkah 4
Sederhanakan .
Ketuk untuk lebih banyak langkah...
Langkah 4.1
Tulis kembali sebagai .
Langkah 4.2
Sederhanakan pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 4.2.1
Tulis kembali sebagai .
Langkah 4.2.2
Mengeluarkan suku-suku dari bawah akar, dengan asumsi bahwa bilangan riil positif.
Langkah 4.3
Sederhanakan penyebutnya.
Ketuk untuk lebih banyak langkah...
Langkah 4.3.1
Tulis kembali sebagai .
Langkah 4.3.2
Mengeluarkan suku-suku dari bawah akar, dengan asumsi bahwa bilangan riil positif.
Langkah 5
Penyelesaian lengkap adalah hasil dari bagian positif dan negatif dari penyelesaian tersebut.
Ketuk untuk lebih banyak langkah...
Langkah 5.1
Pertama, gunakan nilai positif dari untuk menemukan penyelesaian pertama.
Langkah 5.2
Selanjutnya, gunakan nilai negatif dari untuk menemukan penyelesaian kedua.
Langkah 5.3
Penyelesaian lengkap adalah hasil dari bagian positif dan negatif dari penyelesaian tersebut.
Langkah 6
Tulis setiap penyelesaian untuk menyelesaikan .
Langkah 7
Selesaikan dalam .
Ketuk untuk lebih banyak langkah...
Langkah 7.1
Ambil kosinus balikan dari kedua sisi persamaan untuk mendapatkan dari dalam kosinus.
Langkah 7.2
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 7.2.1
Evaluasi .
Langkah 7.3
Fungsi kosinus positif pada kuadran pertama dan keempat. Untuk menghitung penyelesaian kedua, kurangi sudut acuan dari untuk menemukan penyelesaian pada kuadran keempat.
Langkah 7.4
Selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 7.4.1
Hilangkan tanda kurung.
Langkah 7.4.2
Sederhanakan .
Ketuk untuk lebih banyak langkah...
Langkah 7.4.2.1
Kalikan dengan .
Langkah 7.4.2.2
Kurangi dengan .
Langkah 7.5
Tentukan periode dari .
Ketuk untuk lebih banyak langkah...
Langkah 7.5.1
Periode fungsi dapat dihitung menggunakan .
Langkah 7.5.2
Ganti dengan dalam rumus untuk periode.
Langkah 7.5.3
Nilai mutlak adalah jarak antara sebuah bilangan dan nol. Jarak antara dan adalah .
Langkah 7.5.4
Bagilah dengan .
Langkah 7.6
Periode dari fungsi adalah sehingga nilai-nilai akan berulang setiap radian di kedua arah.
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat
Langkah 8
Selesaikan dalam .
Ketuk untuk lebih banyak langkah...
Langkah 8.1
Ambil kosinus balikan dari kedua sisi persamaan untuk mendapatkan dari dalam kosinus.
Langkah 8.2
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 8.2.1
Evaluasi .
Langkah 8.3
Fungsi kosinus negatif di kuadran kedua dan ketiga. Untuk menghitung penyelesaian kedua, kurangi sudut acuan dari untuk menghitung penyelesaian di kuadran ketiga.
Langkah 8.4
Selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 8.4.1
Hilangkan tanda kurung.
Langkah 8.4.2
Sederhanakan .
Ketuk untuk lebih banyak langkah...
Langkah 8.4.2.1
Kalikan dengan .
Langkah 8.4.2.2
Kurangi dengan .
Langkah 8.5
Tentukan periode dari .
Ketuk untuk lebih banyak langkah...
Langkah 8.5.1
Periode fungsi dapat dihitung menggunakan .
Langkah 8.5.2
Ganti dengan dalam rumus untuk periode.
Langkah 8.5.3
Nilai mutlak adalah jarak antara sebuah bilangan dan nol. Jarak antara dan adalah .
Langkah 8.5.4
Bagilah dengan .
Langkah 8.6
Periode dari fungsi adalah sehingga nilai-nilai akan berulang setiap radian di kedua arah.
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat
Langkah 9
Sebutkan semua penyelesaiannya.
, untuk sebarang bilangan bulat
Langkah 10
Gabungkan penyelesaiannya.
Ketuk untuk lebih banyak langkah...
Langkah 10.1
Gabungkan dan menjadi .
, untuk sebarang bilangan bulat
Langkah 10.2
Gabungkan dan menjadi .
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat