Masukkan soal...
Trigonometri Contoh
Langkah 1
Langkah 1.1
Faktorkan dari .
Langkah 1.2
Faktorkan dari .
Langkah 1.3
Faktorkan dari .
Langkah 2
Jika faktor individu di sisi kiri persamaan sama dengan , seluruh pernyataan akan menjadi sama dengan .
Langkah 3
Langkah 3.1
Atur sama dengan .
Langkah 3.2
Selesaikan untuk .
Langkah 3.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Langkah 3.2.2
Sederhanakan .
Langkah 3.2.2.1
Tulis kembali sebagai .
Langkah 3.2.2.2
Mengeluarkan suku-suku dari bawah akar, dengan asumsi bahwa bilangan riil positif.
Langkah 3.2.2.3
Tambah atau kurang adalah .
Langkah 3.2.3
Ambil sinus balikan dari kedua sisi persamaan untuk mendapatkan dari dalam sinus.
Langkah 3.2.4
Sederhanakan sisi kanannya.
Langkah 3.2.4.1
Nilai eksak dari adalah .
Langkah 3.2.5
Fungsi sinus positif di kuadran pertama dan kedua. Untuk menemukan penyelesaian kedua, kurangi sudut acuan dari untuk menemukan penyelesaian di kuadran kedua.
Langkah 3.2.6
Kurangi dengan .
Langkah 3.2.7
Tentukan periode dari .
Langkah 3.2.7.1
Periode fungsi dapat dihitung menggunakan .
Langkah 3.2.7.2
Ganti dengan dalam rumus untuk periode.
Langkah 3.2.7.3
Nilai mutlak adalah jarak antara sebuah bilangan dan nol. Jarak antara dan adalah .
Langkah 3.2.7.4
Bagilah dengan .
Langkah 3.2.8
Periode dari fungsi adalah sehingga nilai-nilai akan berulang setiap radian di kedua arah.
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat
Langkah 4
Langkah 4.1
Atur sama dengan .
Langkah 4.2
Selesaikan untuk .
Langkah 4.2.1
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 4.2.2
Bagi setiap suku pada dengan dan sederhanakan.
Langkah 4.2.2.1
Bagilah setiap suku di dengan .
Langkah 4.2.2.2
Sederhanakan sisi kirinya.
Langkah 4.2.2.2.1
Batalkan faktor persekutuan dari .
Langkah 4.2.2.2.1.1
Batalkan faktor persekutuan.
Langkah 4.2.2.2.1.2
Bagilah dengan .
Langkah 4.2.2.3
Sederhanakan sisi kanannya.
Langkah 4.2.2.3.1
Pindahkan tanda negatif di depan pecahan.
Langkah 4.2.3
Ambil kosinus balikan dari kedua sisi persamaan untuk mendapatkan dari dalam kosinus.
Langkah 4.2.4
Sederhanakan sisi kanannya.
Langkah 4.2.4.1
Nilai eksak dari adalah .
Langkah 4.2.5
Fungsi kosinus negatif di kuadran kedua dan ketiga. Untuk menghitung penyelesaian kedua, kurangi sudut acuan dari untuk menghitung penyelesaian di kuadran ketiga.
Langkah 4.2.6
Sederhanakan .
Langkah 4.2.6.1
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 4.2.6.2
Gabungkan pecahan.
Langkah 4.2.6.2.1
Gabungkan dan .
Langkah 4.2.6.2.2
Gabungkan pembilang dari penyebut persekutuan.
Langkah 4.2.6.3
Sederhanakan pembilangnya.
Langkah 4.2.6.3.1
Kalikan dengan .
Langkah 4.2.6.3.2
Kurangi dengan .
Langkah 4.2.7
Tentukan periode dari .
Langkah 4.2.7.1
Periode fungsi dapat dihitung menggunakan .
Langkah 4.2.7.2
Ganti dengan dalam rumus untuk periode.
Langkah 4.2.7.3
Nilai mutlak adalah jarak antara sebuah bilangan dan nol. Jarak antara dan adalah .
Langkah 4.2.7.4
Bagilah dengan .
Langkah 4.2.8
Periode dari fungsi adalah sehingga nilai-nilai akan berulang setiap radian di kedua arah.
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat
Langkah 5
Penyelesaian akhirnya adalah semua nilai yang membuat benar.
, untuk sebarang bilangan bulat
Langkah 6
Gabungkan dan menjadi .
, untuk sebarang bilangan bulat