Masukkan soal...
Trigonometri Contoh
Langkah 1
Terapkan identitas sudut ganda sinus.
Langkah 2
Langkah 2.1
Naikkan menjadi pangkat .
Langkah 2.2
Faktorkan dari .
Langkah 2.3
Faktorkan dari .
Langkah 2.4
Faktorkan dari .
Langkah 3
Jika faktor individu di sisi kiri persamaan sama dengan , seluruh pernyataan akan menjadi sama dengan .
Langkah 4
Langkah 4.1
Atur sama dengan .
Langkah 4.2
Selesaikan untuk .
Langkah 4.2.1
Ambil sinus balikan dari kedua sisi persamaan untuk mendapatkan dari dalam sinus.
Langkah 4.2.2
Sederhanakan sisi kanannya.
Langkah 4.2.2.1
Nilai eksak dari adalah .
Langkah 4.2.3
Fungsi sinus positif di kuadran pertama dan kedua. Untuk menemukan penyelesaian kedua, kurangi sudut acuan dari untuk menemukan penyelesaian di kuadran kedua.
Langkah 4.2.4
Kurangi dengan .
Langkah 4.2.5
Tentukan periode dari .
Langkah 4.2.5.1
Periode fungsi dapat dihitung menggunakan .
Langkah 4.2.5.2
Ganti dengan dalam rumus untuk periode.
Langkah 4.2.5.3
Nilai mutlak adalah jarak antara sebuah bilangan dan nol. Jarak antara dan adalah .
Langkah 4.2.5.4
Bagilah dengan .
Langkah 4.2.6
Periode dari fungsi adalah sehingga nilai-nilai akan berulang setiap radian di kedua arah.
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat
Langkah 5
Langkah 5.1
Atur sama dengan .
Langkah 5.2
Selesaikan untuk .
Langkah 5.2.1
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 5.2.2
Bagi setiap suku pada dengan dan sederhanakan.
Langkah 5.2.2.1
Bagilah setiap suku di dengan .
Langkah 5.2.2.2
Sederhanakan sisi kirinya.
Langkah 5.2.2.2.1
Batalkan faktor persekutuan dari .
Langkah 5.2.2.2.1.1
Batalkan faktor persekutuan.
Langkah 5.2.2.2.1.2
Bagilah dengan .
Langkah 5.2.2.3
Sederhanakan sisi kanannya.
Langkah 5.2.2.3.1
Pindahkan tanda negatif di depan pecahan.
Langkah 5.2.3
Ambil kosinus balikan dari kedua sisi persamaan untuk mendapatkan dari dalam kosinus.
Langkah 5.2.4
Sederhanakan sisi kanannya.
Langkah 5.2.4.1
Nilai eksak dari adalah .
Langkah 5.2.5
Fungsi kosinus negatif di kuadran kedua dan ketiga. Untuk menghitung penyelesaian kedua, kurangi sudut acuan dari untuk menghitung penyelesaian di kuadran ketiga.
Langkah 5.2.6
Sederhanakan .
Langkah 5.2.6.1
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 5.2.6.2
Gabungkan pecahan.
Langkah 5.2.6.2.1
Gabungkan dan .
Langkah 5.2.6.2.2
Gabungkan pembilang dari penyebut persekutuan.
Langkah 5.2.6.3
Sederhanakan pembilangnya.
Langkah 5.2.6.3.1
Kalikan dengan .
Langkah 5.2.6.3.2
Kurangi dengan .
Langkah 5.2.7
Tentukan periode dari .
Langkah 5.2.7.1
Periode fungsi dapat dihitung menggunakan .
Langkah 5.2.7.2
Ganti dengan dalam rumus untuk periode.
Langkah 5.2.7.3
Nilai mutlak adalah jarak antara sebuah bilangan dan nol. Jarak antara dan adalah .
Langkah 5.2.7.4
Bagilah dengan .
Langkah 5.2.8
Periode dari fungsi adalah sehingga nilai-nilai akan berulang setiap radian di kedua arah.
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat
Langkah 6
Penyelesaian akhirnya adalah semua nilai yang membuat benar.
, untuk sebarang bilangan bulat
Langkah 7
Gabungkan dan menjadi .
, untuk sebarang bilangan bulat
Langkah 8
Gunakan masing-masing akar untuk membuat interval pengujian.
Langkah 9
Langkah 9.1
Uji nilai pada interval untuk melihat apakah nilai ini membuat pertidaksamaan bernilai benar.
Langkah 9.1.1
Pilih nilai pada interval dan lihat apakah nilai ini membuat pertidaksamaan asal bernilai benar.
Langkah 9.1.2
Ganti dengan pada pertidaksamaan asal.
Langkah 9.1.3
Sisi kiri lebih besar dari sisi kanan , yang berarti pernyataan yang diberikan selalu benar.
True
True
Langkah 9.2
Uji nilai pada interval untuk melihat apakah nilai ini membuat pertidaksamaan bernilai benar.
Langkah 9.2.1
Pilih nilai pada interval dan lihat apakah nilai ini membuat pertidaksamaan asal bernilai benar.
Langkah 9.2.2
Ganti dengan pada pertidaksamaan asal.
Langkah 9.2.3
Sisi kiri tidak lebih besar dari sisi kanan , yang berarti pernyataan yang diberikan salah.
False
False
Langkah 9.3
Uji nilai pada interval untuk melihat apakah nilai ini membuat pertidaksamaan bernilai benar.
Langkah 9.3.1
Pilih nilai pada interval dan lihat apakah nilai ini membuat pertidaksamaan asal bernilai benar.
Langkah 9.3.2
Ganti dengan pada pertidaksamaan asal.
Langkah 9.3.3
Sisi kiri lebih besar dari sisi kanan , yang berarti pernyataan yang diberikan selalu benar.
True
True
Langkah 9.4
Uji nilai pada interval untuk melihat apakah nilai ini membuat pertidaksamaan bernilai benar.
Langkah 9.4.1
Pilih nilai pada interval dan lihat apakah nilai ini membuat pertidaksamaan asal bernilai benar.
Langkah 9.4.2
Ganti dengan pada pertidaksamaan asal.
Langkah 9.4.3
Sisi kiri tidak lebih besar dari sisi kanan , yang berarti pernyataan yang diberikan salah.
False
False
Langkah 9.5
Uji nilai pada interval untuk melihat apakah nilai ini membuat pertidaksamaan bernilai benar.
Langkah 9.5.1
Pilih nilai pada interval dan lihat apakah nilai ini membuat pertidaksamaan asal bernilai benar.
Langkah 9.5.2
Ganti dengan pada pertidaksamaan asal.
Langkah 9.5.3
Sisi kiri lebih besar dari sisi kanan , yang berarti pernyataan yang diberikan selalu benar.
True
True
Langkah 9.6
Bandingkan interval untuk menentukan mana yang memenuhi pertidaksamaan asal.
Benar
Salah
Benar
Salah
Benar
Benar
Salah
Benar
Salah
Benar
Langkah 10
Penyelesaian tersebut terdiri dari semua interval hakiki.
or or , for any integer
Langkah 11
Gabungkan interval-intervalnya.
, untuk sebarang bilangan bulat
Langkah 12