Masukkan soal...
Trigonometri Contoh
Langkah 1
Langkah 1.1
Untuk sebarang , asimtot tegaknya terjadi pada , di mana adalah sebuah bilangan bulat. Gunakan periode dasar untuk , , untuk menentukan asimtot tegak . Atur di dalam fungsi sekan, , untuk agar sama dengan untuk menentukan di mana asimtot tegaknya terjadi untuk .
Langkah 1.2
Selesaikan .
Langkah 1.2.1
Pindahkan semua suku yang tidak mengandung ke sisi kanan dari persamaan.
Langkah 1.2.1.1
Tambahkan ke kedua sisi persamaan.
Langkah 1.2.1.2
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 1.2.1.3
Gabungkan dan .
Langkah 1.2.1.4
Gabungkan pembilang dari penyebut persekutuan.
Langkah 1.2.1.5
Sederhanakan pembilangnya.
Langkah 1.2.1.5.1
Kalikan dengan .
Langkah 1.2.1.5.2
Tambahkan dan .
Langkah 1.2.2
Karena pernyataan pada setiap sisi persamaan mempunyai penyebut yang sama, maka pembilangnya harus sama.
Langkah 1.3
Atur bagian dalam fungsi sekan agar sama dengan .
Langkah 1.4
Selesaikan .
Langkah 1.4.1
Pindahkan semua suku yang tidak mengandung ke sisi kanan dari persamaan.
Langkah 1.4.1.1
Tambahkan ke kedua sisi persamaan.
Langkah 1.4.1.2
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 1.4.1.3
Gabungkan dan .
Langkah 1.4.1.4
Gabungkan pembilang dari penyebut persekutuan.
Langkah 1.4.1.5
Sederhanakan pembilangnya.
Langkah 1.4.1.5.1
Kalikan dengan .
Langkah 1.4.1.5.2
Tambahkan dan .
Langkah 1.4.2
Karena pernyataan pada setiap sisi persamaan mempunyai penyebut yang sama, maka pembilangnya harus sama.
Langkah 1.5
Periode dasar untuk akan terjadi pada , di mana dan adalah asimtot tegak.
Langkah 1.6
Tentukan periode untuk mencari di mana asimtot tegaknya berada. Asimtot tegak terjadi setiap setengah periode.
Langkah 1.6.1
mendekati yang positif sehingga menghapus nilai mutlak
Langkah 1.6.2
Kalikan pembilang dengan balikan dari penyebut.
Langkah 1.6.3
Kalikan dengan .
Langkah 1.7
Asimtot tegak untuk terjadi pada , , dan setiap , di mana merupakan bilangan bulat. Ini adalah setengah dari periodenya.
Langkah 1.8
Sekan hanya memiliki asimtot tegak.
Tidak Ada Asimtot Datar
Tidak Ada Asimtot Miring
Asimtot Tegak: di mana adalah bilangan bulat
Tidak Ada Asimtot Datar
Tidak Ada Asimtot Miring
Asimtot Tegak: di mana adalah bilangan bulat
Langkah 2
Gunakan bentuk untuk menemukan variabel yang digunakan untuk menentukan amplitudo, periode, geseran fase, dan pergeseran tegak.
Langkah 3
Karena grafik fungsi tidak memiliki nilai maksimum ataupun minimum, tidak ada nilai untuk amplitudonya.
Amplitudo: Tidak Ada
Langkah 4
Langkah 4.1
Tentukan periode dari .
Langkah 4.1.1
Periode fungsi dapat dihitung menggunakan .
Langkah 4.1.2
Ganti dengan dalam rumus untuk periode.
Langkah 4.1.3
mendekati yang positif sehingga menghapus nilai mutlak
Langkah 4.1.4
Kalikan pembilang dengan balikan dari penyebut.
Langkah 4.1.5
Kalikan dengan .
Langkah 4.2
Tentukan periode dari .
Langkah 4.2.1
Periode fungsi dapat dihitung menggunakan .
Langkah 4.2.2
Ganti dengan dalam rumus untuk periode.
Langkah 4.2.3
mendekati yang positif sehingga menghapus nilai mutlak
Langkah 4.2.4
Kalikan pembilang dengan balikan dari penyebut.
Langkah 4.2.5
Kalikan dengan .
Langkah 4.3
Periode dari penjumlahan/pengurangan fungsi trigonometri adalah maksimum dari periode individual.
Langkah 5
Langkah 5.1
Geseran fase fungsi dapat dihitung dari .
Geseran Fase:
Langkah 5.2
Ganti nilai dari dan dalam persamaan untuk geseran fase.
Geseran Fase:
Langkah 5.3
Kalikan pembilang dengan balikan dari penyebut.
Geseran Fase:
Langkah 5.4
Kalikan dengan .
Geseran Fase:
Geseran Fase:
Langkah 6
Sebutkan sifat-sifat fungsi trigonometri.
Amplitudo: Tidak Ada
Periode:
Geseran Fase: ( ke kanan)
Pergeseran Tegak:
Langkah 7
Fungsi trigonometri dapat digambar menggunakan amplitudo, periode, geseran fase, pergeseran tegak, dan titik-titik.
Asimtot Tegak: di mana adalah bilangan bulat
Amplitudo: Tidak Ada
Periode:
Geseran Fase: ( ke kanan)
Pergeseran Tegak:
Langkah 8