Trigonometri Contoh

Selesaikan untuk x akar kuadrat dari cos(x)=2cos(x)-1
Langkah 1
Untuk menghapus akar pada sisi kiri persamaan, kuadratkan kedua sisi persamaan.
Langkah 2
Sederhanakan setiap sisi persamaan tersebut.
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Gunakan untuk menuliskan kembali sebagai .
Langkah 2.2
Sederhanakan sisi kirinya.
Ketuk untuk lebih banyak langkah...
Langkah 2.2.1
Sederhanakan .
Ketuk untuk lebih banyak langkah...
Langkah 2.2.1.1
Kalikan eksponen dalam .
Ketuk untuk lebih banyak langkah...
Langkah 2.2.1.1.1
Terapkan kaidah pangkat dan perkalian eksponen, .
Langkah 2.2.1.1.2
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 2.2.1.1.2.1
Batalkan faktor persekutuan.
Langkah 2.2.1.1.2.2
Tulis kembali pernyataannya.
Langkah 2.2.1.2
Sederhanakan.
Langkah 2.3
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 2.3.1
Sederhanakan .
Ketuk untuk lebih banyak langkah...
Langkah 2.3.1.1
Tulis kembali sebagai .
Langkah 2.3.1.2
Perluas menggunakan Metode FOIL.
Ketuk untuk lebih banyak langkah...
Langkah 2.3.1.2.1
Terapkan sifat distributif.
Langkah 2.3.1.2.2
Terapkan sifat distributif.
Langkah 2.3.1.2.3
Terapkan sifat distributif.
Langkah 2.3.1.3
Sederhanakan dan gabungkan suku-suku sejenis.
Ketuk untuk lebih banyak langkah...
Langkah 2.3.1.3.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 2.3.1.3.1.1
Kalikan .
Ketuk untuk lebih banyak langkah...
Langkah 2.3.1.3.1.1.1
Kalikan dengan .
Langkah 2.3.1.3.1.1.2
Naikkan menjadi pangkat .
Langkah 2.3.1.3.1.1.3
Naikkan menjadi pangkat .
Langkah 2.3.1.3.1.1.4
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 2.3.1.3.1.1.5
Tambahkan dan .
Langkah 2.3.1.3.1.2
Kalikan dengan .
Langkah 2.3.1.3.1.3
Kalikan dengan .
Langkah 2.3.1.3.1.4
Kalikan dengan .
Langkah 2.3.1.3.2
Kurangi dengan .
Langkah 3
Selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 3.1
Pindahkan semua pernyataan ke sisi kiri dari persamaan tersebut.
Ketuk untuk lebih banyak langkah...
Langkah 3.1.1
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 3.1.2
Tambahkan ke kedua sisi persamaan.
Langkah 3.1.3
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 3.2
Tambahkan dan .
Langkah 3.3
Faktorkan .
Ketuk untuk lebih banyak langkah...
Langkah 3.3.1
Biarkan . Masukkan untuk semua kejadian .
Langkah 3.3.2
Faktorkan dengan pengelompokan.
Ketuk untuk lebih banyak langkah...
Langkah 3.3.2.1
Susun kembali suku-suku.
Langkah 3.3.2.2
Untuk polinomial dari bentuk , tulis kembali suku tengahnya sebagai penjumlahan dari dua suku yang hasil kalinya adalah dan yang jumlahnya adalah .
Ketuk untuk lebih banyak langkah...
Langkah 3.3.2.2.1
Faktorkan dari .
Langkah 3.3.2.2.2
Tulis kembali sebagai ditambah
Langkah 3.3.2.2.3
Terapkan sifat distributif.
Langkah 3.3.2.2.4
Kalikan dengan .
Langkah 3.3.2.3
Faktorkan faktor persekutuan terbesar dari setiap kelompok.
Ketuk untuk lebih banyak langkah...
Langkah 3.3.2.3.1
Kelompokkan dua suku pertama dan dua suku terakhir.
Langkah 3.3.2.3.2
Faktorkan faktor persekutuan terbesar (FPB) dari setiap kelompok.
Langkah 3.3.2.4
Faktorkan polinomial dengan memfaktorkan faktor persekutuan terbesar, .
Langkah 3.3.3
Ganti semua kemunculan dengan .
Langkah 3.4
Jika faktor individu di sisi kiri persamaan sama dengan , seluruh pernyataan akan menjadi sama dengan .
Langkah 3.5
Atur agar sama dengan dan selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 3.5.1
Atur sama dengan .
Langkah 3.5.2
Selesaikan untuk .
Ketuk untuk lebih banyak langkah...
Langkah 3.5.2.1
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 3.5.2.2
Bagi setiap suku pada dengan dan sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 3.5.2.2.1
Bagilah setiap suku di dengan .
Langkah 3.5.2.2.2
Sederhanakan sisi kirinya.
Ketuk untuk lebih banyak langkah...
Langkah 3.5.2.2.2.1
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 3.5.2.2.2.1.1
Batalkan faktor persekutuan.
Langkah 3.5.2.2.2.1.2
Bagilah dengan .
Langkah 3.5.2.2.3
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 3.5.2.2.3.1
Membagi dua nilai negatif menghasilkan nilai positif.
Langkah 3.5.2.3
Ambil kosinus balikan dari kedua sisi persamaan untuk mendapatkan dari dalam kosinus.
Langkah 3.5.2.4
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 3.5.2.4.1
Evaluasi .
Langkah 3.5.2.5
Fungsi kosinus positif pada kuadran pertama dan keempat. Untuk menghitung penyelesaian kedua, kurangi sudut acuan dari untuk menemukan penyelesaian pada kuadran keempat.
Langkah 3.5.2.6
Selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 3.5.2.6.1
Hilangkan tanda kurung.
Langkah 3.5.2.6.2
Sederhanakan .
Ketuk untuk lebih banyak langkah...
Langkah 3.5.2.6.2.1
Kalikan dengan .
Langkah 3.5.2.6.2.2
Kurangi dengan .
Langkah 3.5.2.7
Tentukan periode dari .
Ketuk untuk lebih banyak langkah...
Langkah 3.5.2.7.1
Periode fungsi dapat dihitung menggunakan .
Langkah 3.5.2.7.2
Ganti dengan dalam rumus untuk periode.
Langkah 3.5.2.7.3
Nilai mutlak adalah jarak antara sebuah bilangan dan nol. Jarak antara dan adalah .
Langkah 3.5.2.7.4
Bagilah dengan .
Langkah 3.5.2.8
Periode dari fungsi adalah sehingga nilai-nilai akan berulang setiap radian di kedua arah.
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat
Langkah 3.6
Atur agar sama dengan dan selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 3.6.1
Atur sama dengan .
Langkah 3.6.2
Selesaikan untuk .
Ketuk untuk lebih banyak langkah...
Langkah 3.6.2.1
Tambahkan ke kedua sisi persamaan.
Langkah 3.6.2.2
Ambil kosinus balikan dari kedua sisi persamaan untuk mendapatkan dari dalam kosinus.
Langkah 3.6.2.3
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 3.6.2.3.1
Nilai eksak dari adalah .
Langkah 3.6.2.4
Fungsi kosinus positif pada kuadran pertama dan keempat. Untuk menghitung penyelesaian kedua, kurangi sudut acuan dari untuk menemukan penyelesaian pada kuadran keempat.
Langkah 3.6.2.5
Kurangi dengan .
Langkah 3.6.2.6
Tentukan periode dari .
Ketuk untuk lebih banyak langkah...
Langkah 3.6.2.6.1
Periode fungsi dapat dihitung menggunakan .
Langkah 3.6.2.6.2
Ganti dengan dalam rumus untuk periode.
Langkah 3.6.2.6.3
Nilai mutlak adalah jarak antara sebuah bilangan dan nol. Jarak antara dan adalah .
Langkah 3.6.2.6.4
Bagilah dengan .
Langkah 3.6.2.7
Periode dari fungsi adalah sehingga nilai-nilai akan berulang setiap radian di kedua arah.
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat
Langkah 3.7
Penyelesaian akhirnya adalah semua nilai yang membuat benar.
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat
Langkah 4
Gabungkan dan menjadi .
, untuk sebarang bilangan bulat
Langkah 5
Meniadakan penyelesaian yang tidak membuat benar.
, untuk sebarang bilangan bulat