Masukkan soal...
Trigonometri Contoh
Langkah 1
Langkah 1.1
Untuk polinomial dari bentuk , tulis kembali suku tengahnya sebagai penjumlahan dari dua suku yang hasil kalinya adalah dan yang jumlahnya adalah .
Langkah 1.1.1
Faktorkan dari .
Langkah 1.1.2
Tulis kembali sebagai ditambah
Langkah 1.1.3
Terapkan sifat distributif.
Langkah 1.1.4
Kalikan dengan .
Langkah 1.2
Faktorkan faktor persekutuan terbesar dari setiap kelompok.
Langkah 1.2.1
Kelompokkan dua suku pertama dan dua suku terakhir.
Langkah 1.2.2
Faktorkan faktor persekutuan terbesar (FPB) dari setiap kelompok.
Langkah 1.3
Faktorkan polinomial dengan memfaktorkan faktor persekutuan terbesar, .
Langkah 2
Jika faktor individu di sisi kiri persamaan sama dengan , seluruh pernyataan akan menjadi sama dengan .
Langkah 3
Langkah 3.1
Atur sama dengan .
Langkah 3.2
Selesaikan untuk .
Langkah 3.2.1
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 3.2.2
Bagi setiap suku pada dengan dan sederhanakan.
Langkah 3.2.2.1
Bagilah setiap suku di dengan .
Langkah 3.2.2.2
Sederhanakan sisi kirinya.
Langkah 3.2.2.2.1
Batalkan faktor persekutuan dari .
Langkah 3.2.2.2.1.1
Batalkan faktor persekutuan.
Langkah 3.2.2.2.1.2
Bagilah dengan .
Langkah 3.2.2.3
Sederhanakan sisi kanannya.
Langkah 3.2.2.3.1
Pindahkan tanda negatif di depan pecahan.
Langkah 3.2.3
Ambil kosinus balikan dari kedua sisi persamaan untuk mendapatkan dari dalam kosinus.
Langkah 3.2.4
Sederhanakan sisi kanannya.
Langkah 3.2.4.1
Nilai eksak dari adalah .
Langkah 3.2.5
Fungsi kosinus negatif di kuadran kedua dan ketiga. Untuk menghitung penyelesaian kedua, kurangi sudut acuan dari untuk menghitung penyelesaian di kuadran ketiga.
Langkah 3.2.6
Sederhanakan .
Langkah 3.2.6.1
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 3.2.6.2
Gabungkan pecahan.
Langkah 3.2.6.2.1
Gabungkan dan .
Langkah 3.2.6.2.2
Gabungkan pembilang dari penyebut persekutuan.
Langkah 3.2.6.3
Sederhanakan pembilangnya.
Langkah 3.2.6.3.1
Kalikan dengan .
Langkah 3.2.6.3.2
Kurangi dengan .
Langkah 3.2.7
Tentukan periode dari .
Langkah 3.2.7.1
Periode fungsi dapat dihitung menggunakan .
Langkah 3.2.7.2
Ganti dengan dalam rumus untuk periode.
Langkah 3.2.7.3
Nilai mutlak adalah jarak antara sebuah bilangan dan nol. Jarak antara dan adalah .
Langkah 3.2.7.4
Bagilah dengan .
Langkah 3.2.8
Periode dari fungsi adalah sehingga nilai-nilai akan berulang setiap radian di kedua arah.
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat
Langkah 4
Langkah 4.1
Atur sama dengan .
Langkah 4.2
Selesaikan untuk .
Langkah 4.2.1
Tambahkan ke kedua sisi persamaan.
Langkah 4.2.2
Jangkauan kosinusnya adalah . Karena tidak berada pada jangkauan ini, maka tidak ada penyelesaian.
Tidak ada penyelesaian
Tidak ada penyelesaian
Tidak ada penyelesaian
Langkah 5
Penyelesaian akhirnya adalah semua nilai yang membuat benar.
, untuk sebarang bilangan bulat