Trigonometri Contoh

Selesaikan untuk ? 8sin(x)^2tan(x)-8sin(x)^2=0
Langkah 1
Sederhanakan sisi kiri dari persamaan tersebut.
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.1
Tulis kembali dalam bentuk sinus dan kosinus.
Langkah 1.1.2
Kalikan .
Ketuk untuk lebih banyak langkah...
Langkah 1.1.2.1
Gabungkan dan .
Langkah 1.1.2.2
Gabungkan dan .
Langkah 1.1.2.3
Kalikan dengan dengan menambahkan eksponennya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.2.3.1
Pindahkan .
Langkah 1.1.2.3.2
Kalikan dengan .
Ketuk untuk lebih banyak langkah...
Langkah 1.1.2.3.2.1
Naikkan menjadi pangkat .
Langkah 1.1.2.3.2.2
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 1.1.2.3.3
Tambahkan dan .
Langkah 1.1.3
Pindahkan ke sebelah kiri .
Langkah 1.2
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 1.2.1
Faktorkan dari .
Langkah 1.2.2
Pisahkan pecahan.
Langkah 1.2.3
Konversikan dari ke .
Langkah 1.2.4
Bagilah dengan .
Langkah 2
Faktorkan dari .
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Faktorkan dari .
Langkah 2.2
Faktorkan dari .
Langkah 3
Jika faktor individu di sisi kiri persamaan sama dengan , seluruh pernyataan akan menjadi sama dengan .
Langkah 4
Atur agar sama dengan dan selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 4.1
Atur sama dengan .
Langkah 4.2
Selesaikan untuk .
Ketuk untuk lebih banyak langkah...
Langkah 4.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Langkah 4.2.2
Sederhanakan .
Ketuk untuk lebih banyak langkah...
Langkah 4.2.2.1
Tulis kembali sebagai .
Langkah 4.2.2.2
Mengeluarkan suku-suku dari bawah akar, dengan asumsi bahwa bilangan riil positif.
Langkah 4.2.2.3
Tambah atau kurang adalah .
Langkah 4.2.3
Ambil sinus balikan dari kedua sisi persamaan untuk mendapatkan dari dalam sinus.
Langkah 4.2.4
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 4.2.4.1
Nilai eksak dari adalah .
Langkah 4.2.5
Fungsi sinus positif di kuadran pertama dan kedua. Untuk menemukan penyelesaian kedua, kurangi sudut acuan dari untuk menemukan penyelesaian di kuadran kedua.
Langkah 4.2.6
Kurangi dengan .
Langkah 4.2.7
Tentukan periode dari .
Ketuk untuk lebih banyak langkah...
Langkah 4.2.7.1
Periode fungsi dapat dihitung menggunakan .
Langkah 4.2.7.2
Ganti dengan dalam rumus untuk periode.
Langkah 4.2.7.3
Nilai mutlak adalah jarak antara sebuah bilangan dan nol. Jarak antara dan adalah .
Langkah 4.2.7.4
Bagilah dengan .
Langkah 4.2.8
Periode dari fungsi adalah sehingga nilai-nilai akan berulang setiap radian di kedua arah.
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat
Langkah 5
Atur agar sama dengan dan selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 5.1
Atur sama dengan .
Langkah 5.2
Selesaikan untuk .
Ketuk untuk lebih banyak langkah...
Langkah 5.2.1
Tambahkan ke kedua sisi persamaan.
Langkah 5.2.2
Ambil tangen balikan dari kedua sisi persamaan untuk mendapatkan dari dalam tangen.
Langkah 5.2.3
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 5.2.3.1
Nilai eksak dari adalah .
Langkah 5.2.4
Fungsi tangen positif di kuadran pertama dan ketiga. Untuk mencari penyelesaian kedua, tambahkan sudut acuan dari untuk mencari penyelesaiannya di kuadran keempat.
Langkah 5.2.5
Sederhanakan .
Ketuk untuk lebih banyak langkah...
Langkah 5.2.5.1
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 5.2.5.2
Gabungkan pecahan.
Ketuk untuk lebih banyak langkah...
Langkah 5.2.5.2.1
Gabungkan dan .
Langkah 5.2.5.2.2
Gabungkan pembilang dari penyebut persekutuan.
Langkah 5.2.5.3
Sederhanakan pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 5.2.5.3.1
Pindahkan ke sebelah kiri .
Langkah 5.2.5.3.2
Tambahkan dan .
Langkah 5.2.6
Tentukan periode dari .
Ketuk untuk lebih banyak langkah...
Langkah 5.2.6.1
Periode fungsi dapat dihitung menggunakan .
Langkah 5.2.6.2
Ganti dengan dalam rumus untuk periode.
Langkah 5.2.6.3
Nilai mutlak adalah jarak antara sebuah bilangan dan nol. Jarak antara dan adalah .
Langkah 5.2.6.4
Bagilah dengan .
Langkah 5.2.7
Periode dari fungsi adalah sehingga nilai-nilai akan berulang setiap radian di kedua arah.
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat
Langkah 6
Penyelesaian akhirnya adalah semua nilai yang membuat benar.
, untuk sebarang bilangan bulat
Langkah 7
Gabungkan jawabannya.
Ketuk untuk lebih banyak langkah...
Langkah 7.1
Gabungkan dan menjadi .
, untuk sebarang bilangan bulat
Langkah 7.2
Gabungkan dan menjadi .
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat