Trigonometri Contoh

Selesaikan untuk ? 3sin(x)+3=2cos(x)^2
Langkah 1
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 2
Kuadratkan kedua sisi persamaan.
Langkah 3
Sederhanakan .
Ketuk untuk lebih banyak langkah...
Langkah 3.1
Terapkan kaidah hasil kali ke .
Langkah 3.2
Naikkan menjadi pangkat .
Langkah 4
Sederhanakan .
Ketuk untuk lebih banyak langkah...
Langkah 4.1
Tulis kembali sebagai .
Langkah 4.2
Perluas menggunakan Metode FOIL.
Ketuk untuk lebih banyak langkah...
Langkah 4.2.1
Terapkan sifat distributif.
Langkah 4.2.2
Terapkan sifat distributif.
Langkah 4.2.3
Terapkan sifat distributif.
Langkah 4.3
Sederhanakan dan gabungkan suku-suku sejenis.
Ketuk untuk lebih banyak langkah...
Langkah 4.3.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 4.3.1.1
Tulis kembali menggunakan sifat komutatif dari perkalian.
Langkah 4.3.1.2
Kalikan dengan dengan menambahkan eksponennya.
Ketuk untuk lebih banyak langkah...
Langkah 4.3.1.2.1
Pindahkan .
Langkah 4.3.1.2.2
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 4.3.1.2.3
Tambahkan dan .
Langkah 4.3.1.3
Kalikan dengan .
Langkah 4.3.1.4
Kalikan dengan .
Langkah 4.3.1.5
Kalikan dengan .
Langkah 4.3.1.6
Kalikan dengan .
Langkah 4.3.2
Kurangi dengan .
Langkah 5
Pindahkan semua pernyataan ke sisi kiri dari persamaan tersebut.
Ketuk untuk lebih banyak langkah...
Langkah 5.1
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 5.2
Tambahkan ke kedua sisi persamaan.
Langkah 5.3
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 6
Sederhanakan .
Ketuk untuk lebih banyak langkah...
Langkah 6.1
Pindahkan .
Langkah 6.2
Susun kembali dan .
Langkah 6.3
Faktorkan dari .
Langkah 6.4
Faktorkan dari .
Langkah 6.5
Faktorkan dari .
Langkah 6.6
Terapkan identitas pythagoras.
Langkah 6.7
Tambahkan dan .
Langkah 7
Selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 7.1
Faktorkan sisi kiri persamaannya.
Ketuk untuk lebih banyak langkah...
Langkah 7.1.1
Tulis kembali sebagai .
Langkah 7.1.2
Biarkan . Masukkan untuk semua kejadian .
Langkah 7.1.3
Faktorkan dari .
Ketuk untuk lebih banyak langkah...
Langkah 7.1.3.1
Faktorkan dari .
Langkah 7.1.3.2
Faktorkan dari .
Langkah 7.1.3.3
Faktorkan dari .
Langkah 7.1.4
Ganti semua kemunculan dengan .
Langkah 7.2
Jika faktor individu di sisi kiri persamaan sama dengan , seluruh pernyataan akan menjadi sama dengan .
Langkah 7.3
Atur agar sama dengan dan selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 7.3.1
Atur sama dengan .
Langkah 7.3.2
Selesaikan untuk .
Ketuk untuk lebih banyak langkah...
Langkah 7.3.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Langkah 7.3.2.2
Sederhanakan .
Ketuk untuk lebih banyak langkah...
Langkah 7.3.2.2.1
Tulis kembali sebagai .
Langkah 7.3.2.2.2
Mengeluarkan suku-suku dari bawah akar, dengan asumsi bahwa bilangan riil positif.
Langkah 7.3.2.2.3
Tambah atau kurang adalah .
Langkah 7.3.2.3
Ambil kosinus balikan dari kedua sisi persamaan untuk mendapatkan dari dalam kosinus.
Langkah 7.3.2.4
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 7.3.2.4.1
Nilai eksak dari adalah .
Langkah 7.3.2.5
Fungsi kosinus positif pada kuadran pertama dan keempat. Untuk menghitung penyelesaian kedua, kurangi sudut acuan dari untuk menemukan penyelesaian pada kuadran keempat.
Langkah 7.3.2.6
Sederhanakan .
Ketuk untuk lebih banyak langkah...
Langkah 7.3.2.6.1
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 7.3.2.6.2
Gabungkan pecahan.
Ketuk untuk lebih banyak langkah...
Langkah 7.3.2.6.2.1
Gabungkan dan .
Langkah 7.3.2.6.2.2
Gabungkan pembilang dari penyebut persekutuan.
Langkah 7.3.2.6.3
Sederhanakan pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 7.3.2.6.3.1
Kalikan dengan .
Langkah 7.3.2.6.3.2
Kurangi dengan .
Langkah 7.3.2.7
Tentukan periode dari .
Ketuk untuk lebih banyak langkah...
Langkah 7.3.2.7.1
Periode fungsi dapat dihitung menggunakan .
Langkah 7.3.2.7.2
Ganti dengan dalam rumus untuk periode.
Langkah 7.3.2.7.3
Nilai mutlak adalah jarak antara sebuah bilangan dan nol. Jarak antara dan adalah .
Langkah 7.3.2.7.4
Bagilah dengan .
Langkah 7.3.2.8
Periode dari fungsi adalah sehingga nilai-nilai akan berulang setiap radian di kedua arah.
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat
Langkah 7.4
Atur agar sama dengan dan selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 7.4.1
Atur sama dengan .
Langkah 7.4.2
Selesaikan untuk .
Ketuk untuk lebih banyak langkah...
Langkah 7.4.2.1
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 7.4.2.2
Bagi setiap suku pada dengan dan sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 7.4.2.2.1
Bagilah setiap suku di dengan .
Langkah 7.4.2.2.2
Sederhanakan sisi kirinya.
Ketuk untuk lebih banyak langkah...
Langkah 7.4.2.2.2.1
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 7.4.2.2.2.1.1
Batalkan faktor persekutuan.
Langkah 7.4.2.2.2.1.2
Bagilah dengan .
Langkah 7.4.2.2.3
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 7.4.2.2.3.1
Membagi dua nilai negatif menghasilkan nilai positif.
Langkah 7.4.2.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Langkah 7.4.2.4
Sederhanakan .
Ketuk untuk lebih banyak langkah...
Langkah 7.4.2.4.1
Tulis kembali sebagai .
Langkah 7.4.2.4.2
Sederhanakan penyebutnya.
Ketuk untuk lebih banyak langkah...
Langkah 7.4.2.4.2.1
Tulis kembali sebagai .
Langkah 7.4.2.4.2.2
Mengeluarkan suku-suku dari bawah akar, dengan asumsi bahwa bilangan riil positif.
Langkah 7.4.2.5
Penyelesaian lengkap adalah hasil dari bagian positif dan negatif dari penyelesaian tersebut.
Ketuk untuk lebih banyak langkah...
Langkah 7.4.2.5.1
Pertama, gunakan nilai positif dari untuk menemukan penyelesaian pertama.
Langkah 7.4.2.5.2
Selanjutnya, gunakan nilai negatif dari untuk menemukan penyelesaian kedua.
Langkah 7.4.2.5.3
Penyelesaian lengkap adalah hasil dari bagian positif dan negatif dari penyelesaian tersebut.
Langkah 7.4.2.6
Tulis setiap penyelesaian untuk menyelesaikan .
Langkah 7.4.2.7
Selesaikan dalam .
Ketuk untuk lebih banyak langkah...
Langkah 7.4.2.7.1
Ambil kosinus balikan dari kedua sisi persamaan untuk mendapatkan dari dalam kosinus.
Langkah 7.4.2.7.2
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 7.4.2.7.2.1
Nilai eksak dari adalah .
Langkah 7.4.2.7.3
Fungsi kosinus positif pada kuadran pertama dan keempat. Untuk menghitung penyelesaian kedua, kurangi sudut acuan dari untuk menemukan penyelesaian pada kuadran keempat.
Langkah 7.4.2.7.4
Sederhanakan .
Ketuk untuk lebih banyak langkah...
Langkah 7.4.2.7.4.1
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 7.4.2.7.4.2
Gabungkan pecahan.
Ketuk untuk lebih banyak langkah...
Langkah 7.4.2.7.4.2.1
Gabungkan dan .
Langkah 7.4.2.7.4.2.2
Gabungkan pembilang dari penyebut persekutuan.
Langkah 7.4.2.7.4.3
Sederhanakan pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 7.4.2.7.4.3.1
Kalikan dengan .
Langkah 7.4.2.7.4.3.2
Kurangi dengan .
Langkah 7.4.2.7.5
Tentukan periode dari .
Ketuk untuk lebih banyak langkah...
Langkah 7.4.2.7.5.1
Periode fungsi dapat dihitung menggunakan .
Langkah 7.4.2.7.5.2
Ganti dengan dalam rumus untuk periode.
Langkah 7.4.2.7.5.3
Nilai mutlak adalah jarak antara sebuah bilangan dan nol. Jarak antara dan adalah .
Langkah 7.4.2.7.5.4
Bagilah dengan .
Langkah 7.4.2.7.6
Periode dari fungsi adalah sehingga nilai-nilai akan berulang setiap radian di kedua arah.
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat
Langkah 7.4.2.8
Selesaikan dalam .
Ketuk untuk lebih banyak langkah...
Langkah 7.4.2.8.1
Ambil kosinus balikan dari kedua sisi persamaan untuk mendapatkan dari dalam kosinus.
Langkah 7.4.2.8.2
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 7.4.2.8.2.1
Nilai eksak dari adalah .
Langkah 7.4.2.8.3
Fungsi kosinus negatif di kuadran kedua dan ketiga. Untuk menghitung penyelesaian kedua, kurangi sudut acuan dari untuk menghitung penyelesaian di kuadran ketiga.
Langkah 7.4.2.8.4
Sederhanakan .
Ketuk untuk lebih banyak langkah...
Langkah 7.4.2.8.4.1
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 7.4.2.8.4.2
Gabungkan pecahan.
Ketuk untuk lebih banyak langkah...
Langkah 7.4.2.8.4.2.1
Gabungkan dan .
Langkah 7.4.2.8.4.2.2
Gabungkan pembilang dari penyebut persekutuan.
Langkah 7.4.2.8.4.3
Sederhanakan pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 7.4.2.8.4.3.1
Kalikan dengan .
Langkah 7.4.2.8.4.3.2
Kurangi dengan .
Langkah 7.4.2.8.5
Tentukan periode dari .
Ketuk untuk lebih banyak langkah...
Langkah 7.4.2.8.5.1
Periode fungsi dapat dihitung menggunakan .
Langkah 7.4.2.8.5.2
Ganti dengan dalam rumus untuk periode.
Langkah 7.4.2.8.5.3
Nilai mutlak adalah jarak antara sebuah bilangan dan nol. Jarak antara dan adalah .
Langkah 7.4.2.8.5.4
Bagilah dengan .
Langkah 7.4.2.8.6
Periode dari fungsi adalah sehingga nilai-nilai akan berulang setiap radian di kedua arah.
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat
Langkah 7.4.2.9
Sebutkan semua penyelesaiannya.
, untuk sebarang bilangan bulat
Langkah 7.4.2.10
Gabungkan penyelesaiannya.
Ketuk untuk lebih banyak langkah...
Langkah 7.4.2.10.1
Gabungkan dan menjadi .
, untuk sebarang bilangan bulat
Langkah 7.4.2.10.2
Gabungkan dan menjadi .
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat
Langkah 7.5
Penyelesaian akhirnya adalah semua nilai yang membuat benar.
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat
Langkah 8
Gabungkan jawabannya.
Ketuk untuk lebih banyak langkah...
Langkah 8.1
Gabungkan dan menjadi .
, untuk sebarang bilangan bulat
Langkah 8.2
Gabungkan jawabannya.
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat
Langkah 9
Periksa setiap penyelesaian dengan mensubstitusikannya ke dalam dan menyelesaikannya.
, untuk sebarang bilangan bulat