Trigonometri Contoh

Selesaikan untuk t 7cot(t)^2+1.2=6
Langkah 1
Pindahkan semua suku yang tidak mengandung ke sisi kanan dari persamaan.
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 1.2
Kurangi dengan .
Langkah 2
Bagi setiap suku pada dengan dan sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Bagilah setiap suku di dengan .
Langkah 2.2
Sederhanakan sisi kirinya.
Ketuk untuk lebih banyak langkah...
Langkah 2.2.1
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 2.2.1.1
Batalkan faktor persekutuan.
Langkah 2.2.1.2
Bagilah dengan .
Langkah 2.3
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 2.3.1
Bagilah dengan .
Langkah 3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Langkah 4
Penyelesaian lengkap adalah hasil dari bagian positif dan negatif dari penyelesaian tersebut.
Ketuk untuk lebih banyak langkah...
Langkah 4.1
Pertama, gunakan nilai positif dari untuk menemukan penyelesaian pertama.
Langkah 4.2
Selanjutnya, gunakan nilai negatif dari untuk menemukan penyelesaian kedua.
Langkah 4.3
Penyelesaian lengkap adalah hasil dari bagian positif dan negatif dari penyelesaian tersebut.
Langkah 5
Tulis setiap penyelesaian untuk menyelesaikan .
Langkah 6
Selesaikan dalam .
Ketuk untuk lebih banyak langkah...
Langkah 6.1
Ambil kotangen balikan dari kedua sisi persamaan untuk mendapatkan dari dalam kotangen.
Langkah 6.2
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 6.2.1
Evaluasi .
Langkah 6.3
Fungsi kotangen positif di kuadran pertama dan ketiga. Untuk mencari penyelesaian kedua, tambahkan sudut acuan dari untuk mencari penyelesaian di kuadran keempat.
Langkah 6.4
Selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 6.4.1
Hilangkan tanda kurung.
Langkah 6.4.2
Hilangkan tanda kurung.
Langkah 6.4.3
Tambahkan dan .
Langkah 6.5
Tentukan periode dari .
Ketuk untuk lebih banyak langkah...
Langkah 6.5.1
Periode fungsi dapat dihitung menggunakan .
Langkah 6.5.2
Ganti dengan dalam rumus untuk periode.
Langkah 6.5.3
Nilai mutlak adalah jarak antara sebuah bilangan dan nol. Jarak antara dan adalah .
Langkah 6.5.4
Bagilah dengan .
Langkah 6.6
Periode dari fungsi adalah sehingga nilai-nilai akan berulang setiap radian di kedua arah.
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat
Langkah 7
Selesaikan dalam .
Ketuk untuk lebih banyak langkah...
Langkah 7.1
Ambil kotangen balikan dari kedua sisi persamaan untuk mendapatkan dari dalam kotangen.
Langkah 7.2
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 7.2.1
Evaluasi .
Langkah 7.3
The cotangent function is negative in the second and fourth quadrants. To find the second solution, subtract the reference angle from to find the solution in the third quadrant.
Langkah 7.4
Sederhanakan pernyataan untuk menentukan penyelesaian yang kedua.
Ketuk untuk lebih banyak langkah...
Langkah 7.4.1
Tambahkan ke .
Langkah 7.4.2
Sudut yang dihasilkan dari positif dan koterminal dengan .
Langkah 7.5
Tentukan periode dari .
Ketuk untuk lebih banyak langkah...
Langkah 7.5.1
Periode fungsi dapat dihitung menggunakan .
Langkah 7.5.2
Ganti dengan dalam rumus untuk periode.
Langkah 7.5.3
Nilai mutlak adalah jarak antara sebuah bilangan dan nol. Jarak antara dan adalah .
Langkah 7.5.4
Bagilah dengan .
Langkah 7.6
Periode dari fungsi adalah sehingga nilai-nilai akan berulang setiap radian di kedua arah.
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat
Langkah 8
Sebutkan semua penyelesaiannya.
, untuk sebarang bilangan bulat
Langkah 9
Gabungkan penyelesaiannya.
Ketuk untuk lebih banyak langkah...
Langkah 9.1
Gabungkan dan menjadi .
, untuk sebarang bilangan bulat
Langkah 9.2
Gabungkan dan menjadi .
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat