Trigonometri Contoh

Selesaikan untuk x cos(x)^2-3sin(x)^2=0
Langkah 1
Ganti dengan berdasarkan identitas .
Langkah 2
Kurangi dengan .
Langkah 3
Susun ulang polinomial tersebut.
Langkah 4
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 5
Bagi setiap suku pada dengan dan sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 5.1
Bagilah setiap suku di dengan .
Langkah 5.2
Sederhanakan sisi kirinya.
Ketuk untuk lebih banyak langkah...
Langkah 5.2.1
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 5.2.1.1
Batalkan faktor persekutuan.
Langkah 5.2.1.2
Bagilah dengan .
Langkah 5.3
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 5.3.1
Membagi dua nilai negatif menghasilkan nilai positif.
Langkah 6
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Langkah 7
Sederhanakan .
Ketuk untuk lebih banyak langkah...
Langkah 7.1
Tulis kembali sebagai .
Langkah 7.2
Sebarang akar dari adalah .
Langkah 7.3
Sederhanakan penyebutnya.
Ketuk untuk lebih banyak langkah...
Langkah 7.3.1
Tulis kembali sebagai .
Langkah 7.3.2
Mengeluarkan suku-suku dari bawah akar, dengan asumsi bahwa bilangan riil positif.
Langkah 8
Penyelesaian lengkap adalah hasil dari bagian positif dan negatif dari penyelesaian tersebut.
Ketuk untuk lebih banyak langkah...
Langkah 8.1
Pertama, gunakan nilai positif dari untuk menemukan penyelesaian pertama.
Langkah 8.2
Selanjutnya, gunakan nilai negatif dari untuk menemukan penyelesaian kedua.
Langkah 8.3
Penyelesaian lengkap adalah hasil dari bagian positif dan negatif dari penyelesaian tersebut.
Langkah 9
Tulis setiap penyelesaian untuk menyelesaikan .
Langkah 10
Selesaikan dalam .
Ketuk untuk lebih banyak langkah...
Langkah 10.1
Ambil sinus balikan dari kedua sisi persamaan untuk mendapatkan dari dalam sinus.
Langkah 10.2
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 10.2.1
Nilai eksak dari adalah .
Langkah 10.3
Fungsi sinus positif di kuadran pertama dan kedua. Untuk menemukan penyelesaian kedua, kurangi sudut acuan dari untuk menemukan penyelesaian di kuadran kedua.
Langkah 10.4
Sederhanakan .
Ketuk untuk lebih banyak langkah...
Langkah 10.4.1
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 10.4.2
Gabungkan pecahan.
Ketuk untuk lebih banyak langkah...
Langkah 10.4.2.1
Gabungkan dan .
Langkah 10.4.2.2
Gabungkan pembilang dari penyebut persekutuan.
Langkah 10.4.3
Sederhanakan pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 10.4.3.1
Pindahkan ke sebelah kiri .
Langkah 10.4.3.2
Kurangi dengan .
Langkah 10.5
Tentukan periode dari .
Ketuk untuk lebih banyak langkah...
Langkah 10.5.1
Periode fungsi dapat dihitung menggunakan .
Langkah 10.5.2
Ganti dengan dalam rumus untuk periode.
Langkah 10.5.3
Nilai mutlak adalah jarak antara sebuah bilangan dan nol. Jarak antara dan adalah .
Langkah 10.5.4
Bagilah dengan .
Langkah 10.6
Periode dari fungsi adalah sehingga nilai-nilai akan berulang setiap radian di kedua arah.
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat
Langkah 11
Selesaikan dalam .
Ketuk untuk lebih banyak langkah...
Langkah 11.1
Ambil sinus balikan dari kedua sisi persamaan untuk mendapatkan dari dalam sinus.
Langkah 11.2
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 11.2.1
Nilai eksak dari adalah .
Langkah 11.3
Fungsi sinus negatif pada kuadran ketiga dan keempat. Untuk menemukan penyelesaian kedua, kurangi penyelesaian dari , untuk mencari sudut acuan. Selanjutnya, tambahkan sudut acuan ini ke untuk mencari penyelesaian pada kuadran ketiga.
Langkah 11.4
Sederhanakan pernyataan untuk menentukan penyelesaian yang kedua.
Ketuk untuk lebih banyak langkah...
Langkah 11.4.1
Kurangi dengan .
Langkah 11.4.2
Sudut yang dihasilkan dari positif, lebih kecil dari , dan koterminal dengan .
Langkah 11.5
Tentukan periode dari .
Ketuk untuk lebih banyak langkah...
Langkah 11.5.1
Periode fungsi dapat dihitung menggunakan .
Langkah 11.5.2
Ganti dengan dalam rumus untuk periode.
Langkah 11.5.3
Nilai mutlak adalah jarak antara sebuah bilangan dan nol. Jarak antara dan adalah .
Langkah 11.5.4
Bagilah dengan .
Langkah 11.6
Tambahkan ke setiap sudut negatif untuk memperoleh sudut positif.
Ketuk untuk lebih banyak langkah...
Langkah 11.6.1
Tambahkan ke untuk menentukan sudut positif.
Langkah 11.6.2
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 11.6.3
Gabungkan pecahan.
Ketuk untuk lebih banyak langkah...
Langkah 11.6.3.1
Gabungkan dan .
Langkah 11.6.3.2
Gabungkan pembilang dari penyebut persekutuan.
Langkah 11.6.4
Sederhanakan pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 11.6.4.1
Kalikan dengan .
Langkah 11.6.4.2
Kurangi dengan .
Langkah 11.6.5
Sebutkan sudut-sudut barunya.
Langkah 11.7
Periode dari fungsi adalah sehingga nilai-nilai akan berulang setiap radian di kedua arah.
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat
Langkah 12
Sebutkan semua penyelesaiannya.
, untuk sebarang bilangan bulat
Langkah 13
Gabungkan penyelesaiannya.
Ketuk untuk lebih banyak langkah...
Langkah 13.1
Gabungkan dan menjadi .
, untuk sebarang bilangan bulat
Langkah 13.2
Gabungkan dan menjadi .
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat