Masukkan soal...
Trigonometri Contoh
Langkah 1
Ganti dengan berdasarkan identitas .
Langkah 2
Kurangi dengan .
Langkah 3
Substitusikan untuk .
Langkah 4
Gunakan rumus kuadrat untuk menghitung penyelesaiannya.
Langkah 5
Substitusikan nilai-nilai , , dan ke dalam rumus kuadrat, lalu selesaikan .
Langkah 6
Langkah 6.1
Sederhanakan pembilangnya.
Langkah 6.1.1
Naikkan menjadi pangkat .
Langkah 6.1.2
Kalikan .
Langkah 6.1.2.1
Kalikan dengan .
Langkah 6.1.2.2
Kalikan dengan .
Langkah 6.1.3
Tambahkan dan .
Langkah 6.2
Kalikan dengan .
Langkah 7
Jawaban akhirnya adalah kombinasi dari kedua penyelesaian tersebut.
Langkah 8
Substitusikan untuk .
Langkah 9
Tulis setiap penyelesaian untuk menyelesaikan .
Langkah 10
Langkah 10.1
Ambil kotangen balikan dari kedua sisi persamaan untuk mendapatkan dari dalam kotangen.
Langkah 10.2
Sederhanakan sisi kanannya.
Langkah 10.2.1
Evaluasi .
Langkah 10.3
Fungsi kotangen positif di kuadran pertama dan ketiga. Untuk mencari penyelesaian kedua, tambahkan sudut acuan dari untuk mencari penyelesaian di kuadran keempat.
Langkah 10.4
Selesaikan .
Langkah 10.4.1
Hilangkan tanda kurung.
Langkah 10.4.2
Hilangkan tanda kurung.
Langkah 10.4.3
Tambahkan dan .
Langkah 10.5
Tentukan periode dari .
Langkah 10.5.1
Periode fungsi dapat dihitung menggunakan .
Langkah 10.5.2
Ganti dengan dalam rumus untuk periode.
Langkah 10.5.3
Nilai mutlak adalah jarak antara sebuah bilangan dan nol. Jarak antara dan adalah .
Langkah 10.5.4
Bagilah dengan .
Langkah 10.6
Periode dari fungsi adalah sehingga nilai-nilai akan berulang setiap radian di kedua arah.
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat
Langkah 11
Langkah 11.1
Ambil kotangen balikan dari kedua sisi persamaan untuk mendapatkan dari dalam kotangen.
Langkah 11.2
Sederhanakan sisi kanannya.
Langkah 11.2.1
Evaluasi .
Langkah 11.3
The cotangent function is negative in the second and fourth quadrants. To find the second solution, subtract the reference angle from to find the solution in the third quadrant.
Langkah 11.4
Sederhanakan pernyataan untuk menentukan penyelesaian yang kedua.
Langkah 11.4.1
Tambahkan ke .
Langkah 11.4.2
Sudut yang dihasilkan dari positif dan koterminal dengan .
Langkah 11.5
Tentukan periode dari .
Langkah 11.5.1
Periode fungsi dapat dihitung menggunakan .
Langkah 11.5.2
Ganti dengan dalam rumus untuk periode.
Langkah 11.5.3
Nilai mutlak adalah jarak antara sebuah bilangan dan nol. Jarak antara dan adalah .
Langkah 11.5.4
Bagilah dengan .
Langkah 11.6
Periode dari fungsi adalah sehingga nilai-nilai akan berulang setiap radian di kedua arah.
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat
Langkah 12
Sebutkan semua penyelesaiannya.
, untuk sebarang bilangan bulat
Langkah 13
Langkah 13.1
Gabungkan dan menjadi .
, untuk sebarang bilangan bulat
Langkah 13.2
Gabungkan dan menjadi .
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat