Trigonometri Contoh

Selesaikan untuk x tan(x)^2-2sec(x)+1=0
Langkah 1
Sederhanakan sisi kiri dari persamaan tersebut.
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Pindahkan .
Langkah 1.2
Terapkan identitas pythagoras.
Langkah 2
Faktorkan dari .
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Faktorkan dari .
Langkah 2.2
Faktorkan dari .
Langkah 2.3
Faktorkan dari .
Langkah 3
Jika faktor individu di sisi kiri persamaan sama dengan , seluruh pernyataan akan menjadi sama dengan .
Langkah 4
Atur agar sama dengan dan selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 4.1
Atur sama dengan .
Langkah 4.2
Jangkauan dari sekan adalah dan . Karena tidak berada dalam jangkauan ini, maka tidak ada penyelesaian.
Tidak ada penyelesaian
Tidak ada penyelesaian
Langkah 5
Atur agar sama dengan dan selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 5.1
Atur sama dengan .
Langkah 5.2
Selesaikan untuk .
Ketuk untuk lebih banyak langkah...
Langkah 5.2.1
Tambahkan ke kedua sisi persamaan.
Langkah 5.2.2
Ambil sekan balikan dari kedua sisi persamaan untuk mendapatkan dari dalam sekan.
Langkah 5.2.3
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 5.2.3.1
Nilai eksak dari adalah .
Langkah 5.2.4
Fungsi sekan positif di kuadran pertama dan keempat. Untuk menghitung penyelesaian kedua, kurangi sudut acuan dari untuk menghitung penyelesaian di kuadran keempat.
Langkah 5.2.5
Sederhanakan .
Ketuk untuk lebih banyak langkah...
Langkah 5.2.5.1
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 5.2.5.2
Gabungkan pecahan.
Ketuk untuk lebih banyak langkah...
Langkah 5.2.5.2.1
Gabungkan dan .
Langkah 5.2.5.2.2
Gabungkan pembilang dari penyebut persekutuan.
Langkah 5.2.5.3
Sederhanakan pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 5.2.5.3.1
Kalikan dengan .
Langkah 5.2.5.3.2
Kurangi dengan .
Langkah 5.2.6
Tentukan periode dari .
Ketuk untuk lebih banyak langkah...
Langkah 5.2.6.1
Periode fungsi dapat dihitung menggunakan .
Langkah 5.2.6.2
Ganti dengan dalam rumus untuk periode.
Langkah 5.2.6.3
Nilai mutlak adalah jarak antara sebuah bilangan dan nol. Jarak antara dan adalah .
Langkah 5.2.6.4
Bagilah dengan .
Langkah 5.2.7
Periode dari fungsi adalah sehingga nilai-nilai akan berulang setiap radian di kedua arah.
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat
Langkah 6
Penyelesaian akhirnya adalah semua nilai yang membuat benar.
, untuk sebarang bilangan bulat