Masukkan soal...
Trigonometri Contoh
Langkah 1
Ganti dengan berdasarkan identitas .
Langkah 2
Langkah 2.1
Terapkan sifat distributif.
Langkah 2.2
Kalikan dengan .
Langkah 3
Susun ulang polinomial tersebut.
Langkah 4
Substitusikan untuk .
Langkah 5
Langkah 5.1
Untuk polinomial dari bentuk , tulis kembali suku tengahnya sebagai penjumlahan dari dua suku yang hasil kalinya adalah dan yang jumlahnya adalah .
Langkah 5.1.1
Faktorkan dari .
Langkah 5.1.2
Tulis kembali sebagai ditambah
Langkah 5.1.3
Terapkan sifat distributif.
Langkah 5.2
Faktorkan faktor persekutuan terbesar dari setiap kelompok.
Langkah 5.2.1
Kelompokkan dua suku pertama dan dua suku terakhir.
Langkah 5.2.2
Faktorkan faktor persekutuan terbesar (FPB) dari setiap kelompok.
Langkah 5.3
Faktorkan polinomial dengan memfaktorkan faktor persekutuan terbesar, .
Langkah 6
Jika faktor individu di sisi kiri persamaan sama dengan , seluruh pernyataan akan menjadi sama dengan .
Langkah 7
Langkah 7.1
Atur sama dengan .
Langkah 7.2
Selesaikan untuk .
Langkah 7.2.1
Tambahkan ke kedua sisi persamaan.
Langkah 7.2.2
Bagi setiap suku pada dengan dan sederhanakan.
Langkah 7.2.2.1
Bagilah setiap suku di dengan .
Langkah 7.2.2.2
Sederhanakan sisi kirinya.
Langkah 7.2.2.2.1
Batalkan faktor persekutuan dari .
Langkah 7.2.2.2.1.1
Batalkan faktor persekutuan.
Langkah 7.2.2.2.1.2
Bagilah dengan .
Langkah 8
Langkah 8.1
Atur sama dengan .
Langkah 8.2
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 9
Penyelesaian akhirnya adalah semua nilai yang membuat benar.
Langkah 10
Substitusikan untuk .
Langkah 11
Tulis setiap penyelesaian untuk menyelesaikan .
Langkah 12
Langkah 12.1
Jangkauan dari kosekan adalah dan . Karena tidak berada pada jangkauan ini, maka tidak ada penyelesaian.
Tidak ada penyelesaian
Tidak ada penyelesaian
Langkah 13
Langkah 13.1
Ambil kosekan balikan dari kedua sisi persamaan untuk mendapatkan dari dalam kosekan.
Langkah 13.2
Sederhanakan sisi kanannya.
Langkah 13.2.1
Nilai eksak dari adalah .
Langkah 13.3
The cosecant function is negative in the third and fourth quadrants. To find the second solution, subtract the solution from , to find a reference angle. Next, add this reference angle to to find the solution in the third quadrant.
Langkah 13.4
Sederhanakan pernyataan untuk menentukan penyelesaian yang kedua.
Langkah 13.4.1
Kurangi dengan .
Langkah 13.4.2
Sudut yang dihasilkan dari positif, lebih kecil dari , dan koterminal dengan .
Langkah 13.5
Tentukan periode dari .
Langkah 13.5.1
Periode fungsi dapat dihitung menggunakan .
Langkah 13.5.2
Ganti dengan dalam rumus untuk periode.
Langkah 13.5.3
Nilai mutlak adalah jarak antara sebuah bilangan dan nol. Jarak antara dan adalah .
Langkah 13.5.4
Bagilah dengan .
Langkah 13.6
Tambahkan ke setiap sudut negatif untuk memperoleh sudut positif.
Langkah 13.6.1
Tambahkan ke untuk menentukan sudut positif.
Langkah 13.6.2
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 13.6.3
Gabungkan pecahan.
Langkah 13.6.3.1
Gabungkan dan .
Langkah 13.6.3.2
Gabungkan pembilang dari penyebut persekutuan.
Langkah 13.6.4
Sederhanakan pembilangnya.
Langkah 13.6.4.1
Kalikan dengan .
Langkah 13.6.4.2
Kurangi dengan .
Langkah 13.6.5
Sebutkan sudut-sudut barunya.
Langkah 13.7
Periode dari fungsi adalah sehingga nilai-nilai akan berulang setiap radian di kedua arah.
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat
Langkah 14
Sebutkan semua penyelesaiannya.
, untuk sebarang bilangan bulat