Trigonometri Contoh

Selesaikan untuk x 2cos(x)=sec(x)
Langkah 1
Bagi setiap suku pada dengan dan sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Bagilah setiap suku di dengan .
Langkah 1.2
Sederhanakan sisi kirinya.
Ketuk untuk lebih banyak langkah...
Langkah 1.2.1
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 1.2.1.1
Batalkan faktor persekutuan.
Langkah 1.2.1.2
Tulis kembali pernyataannya.
Langkah 1.2.2
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 1.2.2.1
Batalkan faktor persekutuan.
Langkah 1.2.2.2
Tulis kembali pernyataannya.
Langkah 1.3
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 1.3.1
Pisahkan pecahan.
Langkah 1.3.2
Tulis kembali dalam bentuk sinus dan kosinus.
Langkah 1.3.3
Tulis kembali sebagai hasil kali.
Langkah 1.3.4
Kalikan dengan .
Langkah 1.3.5
Sederhanakan penyebutnya.
Ketuk untuk lebih banyak langkah...
Langkah 1.3.5.1
Naikkan menjadi pangkat .
Langkah 1.3.5.2
Naikkan menjadi pangkat .
Langkah 1.3.5.3
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 1.3.5.4
Tambahkan dan .
Langkah 1.3.6
Gabungkan pecahan.
Ketuk untuk lebih banyak langkah...
Langkah 1.3.6.1
Gabungkan.
Langkah 1.3.6.2
Kalikan dengan .
Langkah 1.3.7
Kalikan dengan .
Langkah 1.3.8
Pisahkan pecahan.
Langkah 1.3.9
Konversikan dari ke .
Langkah 1.3.10
Kalikan dengan .
Langkah 1.3.11
Gabungkan dan .
Langkah 2
Tulis kembali persamaan tersebut sebagai .
Langkah 3
Kalikan kedua sisi persamaan dengan .
Langkah 4
Sederhanakan kedua sisi dari persamaan tersebut.
Ketuk untuk lebih banyak langkah...
Langkah 4.1
Sederhanakan sisi kirinya.
Ketuk untuk lebih banyak langkah...
Langkah 4.1.1
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 4.1.1.1
Batalkan faktor persekutuan.
Langkah 4.1.1.2
Tulis kembali pernyataannya.
Langkah 4.2
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 4.2.1
Kalikan dengan .
Langkah 5
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Langkah 6
Penyelesaian lengkap adalah hasil dari bagian positif dan negatif dari penyelesaian tersebut.
Ketuk untuk lebih banyak langkah...
Langkah 6.1
Pertama, gunakan nilai positif dari untuk menemukan penyelesaian pertama.
Langkah 6.2
Selanjutnya, gunakan nilai negatif dari untuk menemukan penyelesaian kedua.
Langkah 6.3
Penyelesaian lengkap adalah hasil dari bagian positif dan negatif dari penyelesaian tersebut.
Langkah 7
Tulis setiap penyelesaian untuk menyelesaikan .
Langkah 8
Selesaikan dalam .
Ketuk untuk lebih banyak langkah...
Langkah 8.1
Ambil sekan balikan dari kedua sisi persamaan untuk mendapatkan dari dalam sekan.
Langkah 8.2
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 8.2.1
Nilai eksak dari adalah .
Langkah 8.3
Fungsi sekan positif di kuadran pertama dan keempat. Untuk menghitung penyelesaian kedua, kurangi sudut acuan dari untuk menghitung penyelesaian di kuadran keempat.
Langkah 8.4
Sederhanakan .
Ketuk untuk lebih banyak langkah...
Langkah 8.4.1
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 8.4.2
Gabungkan pecahan.
Ketuk untuk lebih banyak langkah...
Langkah 8.4.2.1
Gabungkan dan .
Langkah 8.4.2.2
Gabungkan pembilang dari penyebut persekutuan.
Langkah 8.4.3
Sederhanakan pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 8.4.3.1
Kalikan dengan .
Langkah 8.4.3.2
Kurangi dengan .
Langkah 8.5
Tentukan periode dari .
Ketuk untuk lebih banyak langkah...
Langkah 8.5.1
Periode fungsi dapat dihitung menggunakan .
Langkah 8.5.2
Ganti dengan dalam rumus untuk periode.
Langkah 8.5.3
Nilai mutlak adalah jarak antara sebuah bilangan dan nol. Jarak antara dan adalah .
Langkah 8.5.4
Bagilah dengan .
Langkah 8.6
Periode dari fungsi adalah sehingga nilai-nilai akan berulang setiap radian di kedua arah.
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat
Langkah 9
Selesaikan dalam .
Ketuk untuk lebih banyak langkah...
Langkah 9.1
Ambil sekan balikan dari kedua sisi persamaan untuk mendapatkan dari dalam sekan.
Langkah 9.2
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 9.2.1
Nilai eksak dari adalah .
Langkah 9.3
Fungsi sekan negatif di kuadran kedua dan ketiga. Untuk menghitung penyelesaian kedua, kurangi sudut acuan dari untuk menghitung penyelesaian di kuadran ketiga.
Langkah 9.4
Sederhanakan .
Ketuk untuk lebih banyak langkah...
Langkah 9.4.1
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 9.4.2
Gabungkan pecahan.
Ketuk untuk lebih banyak langkah...
Langkah 9.4.2.1
Gabungkan dan .
Langkah 9.4.2.2
Gabungkan pembilang dari penyebut persekutuan.
Langkah 9.4.3
Sederhanakan pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 9.4.3.1
Kalikan dengan .
Langkah 9.4.3.2
Kurangi dengan .
Langkah 9.5
Tentukan periode dari .
Ketuk untuk lebih banyak langkah...
Langkah 9.5.1
Periode fungsi dapat dihitung menggunakan .
Langkah 9.5.2
Ganti dengan dalam rumus untuk periode.
Langkah 9.5.3
Nilai mutlak adalah jarak antara sebuah bilangan dan nol. Jarak antara dan adalah .
Langkah 9.5.4
Bagilah dengan .
Langkah 9.6
Periode dari fungsi adalah sehingga nilai-nilai akan berulang setiap radian di kedua arah.
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat
Langkah 10
Sebutkan semua penyelesaiannya.
, untuk sebarang bilangan bulat
Langkah 11
Gabungkan jawabannya.
, untuk sebarang bilangan bulat