Trigonometri Contoh

Selesaikan untuk x cos(pi/2-x)=2/7
Langkah 1
Ambil kosinus balikan dari kedua sisi persamaan untuk mendapatkan dari dalam kosinus.
Langkah 2
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Evaluasi .
Langkah 3
Pindahkan semua suku yang tidak mengandung ke sisi kanan dari persamaan.
Ketuk untuk lebih banyak langkah...
Langkah 3.1
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 3.2
Kurangi dengan .
Langkah 4
Bagi setiap suku pada dengan dan sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 4.1
Bagilah setiap suku di dengan .
Langkah 4.2
Sederhanakan sisi kirinya.
Ketuk untuk lebih banyak langkah...
Langkah 4.2.1
Membagi dua nilai negatif menghasilkan nilai positif.
Langkah 4.2.2
Bagilah dengan .
Langkah 4.3
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 4.3.1
Bagilah dengan .
Langkah 5
Fungsi kosinus positif pada kuadran pertama dan keempat. Untuk menghitung penyelesaian kedua, kurangi sudut acuan dari untuk menemukan penyelesaian pada kuadran keempat.
Langkah 6
Selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 6.1
Sederhanakan .
Ketuk untuk lebih banyak langkah...
Langkah 6.1.1
Kalikan dengan .
Langkah 6.1.2
Kurangi dengan .
Langkah 6.2
Pindahkan semua suku yang tidak mengandung ke sisi kanan dari persamaan.
Ketuk untuk lebih banyak langkah...
Langkah 6.2.1
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 6.2.2
Kurangi dengan .
Langkah 6.3
Bagi setiap suku pada dengan dan sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 6.3.1
Bagilah setiap suku di dengan .
Langkah 6.3.2
Sederhanakan sisi kirinya.
Ketuk untuk lebih banyak langkah...
Langkah 6.3.2.1
Membagi dua nilai negatif menghasilkan nilai positif.
Langkah 6.3.2.2
Bagilah dengan .
Langkah 6.3.3
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 6.3.3.1
Bagilah dengan .
Langkah 7
Tentukan periode dari .
Ketuk untuk lebih banyak langkah...
Langkah 7.1
Periode fungsi dapat dihitung menggunakan .
Langkah 7.2
Ganti dengan dalam rumus untuk periode.
Langkah 7.3
Nilai mutlak adalah jarak antara sebuah bilangan dan nol. Jarak antara dan adalah .
Langkah 7.4
Bagilah dengan .
Langkah 8
Tambahkan ke setiap sudut negatif untuk memperoleh sudut positif.
Ketuk untuk lebih banyak langkah...
Langkah 8.1
Tambahkan ke untuk menentukan sudut positif.
Langkah 8.2
Kurangi dengan .
Langkah 8.3
Sebutkan sudut-sudut barunya.
Langkah 9
Periode dari fungsi adalah sehingga nilai-nilai akan berulang setiap radian di kedua arah.
, untuk sebarang bilangan bulat