Masukkan soal...
Trigonometri Contoh
Langkah 1
Atur penyebut dalam agar sama dengan untuk menentukan di mana pernyataannya tidak terdefinisi.
Langkah 2
Langkah 2.1
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 2.2
Ambil sekan balikan dari kedua sisi persamaan untuk mendapatkan dari dalam sekan.
Langkah 2.3
Sederhanakan sisi kanannya.
Langkah 2.3.1
Nilai eksak dari adalah .
Langkah 2.4
Fungsi sekan negatif di kuadran kedua dan ketiga. Untuk menghitung penyelesaian kedua, kurangi sudut acuan dari untuk menghitung penyelesaian di kuadran ketiga.
Langkah 2.5
Sederhanakan .
Langkah 2.5.1
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 2.5.2
Gabungkan pecahan.
Langkah 2.5.2.1
Gabungkan dan .
Langkah 2.5.2.2
Gabungkan pembilang dari penyebut persekutuan.
Langkah 2.5.3
Sederhanakan pembilangnya.
Langkah 2.5.3.1
Kalikan dengan .
Langkah 2.5.3.2
Kurangi dengan .
Langkah 2.6
Tentukan periode dari .
Langkah 2.6.1
Periode fungsi dapat dihitung menggunakan .
Langkah 2.6.2
Ganti dengan dalam rumus untuk periode.
Langkah 2.6.3
Nilai mutlak adalah jarak antara sebuah bilangan dan nol. Jarak antara dan adalah .
Langkah 2.6.4
Bagilah dengan .
Langkah 2.7
Periode dari fungsi adalah sehingga nilai-nilai akan berulang setiap radian di kedua arah.
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat
Langkah 3
Atur argumen dalam agar sama dengan untuk menentukan di mana pernyataannya tidak terdefinisi.
, untuk sebarang bilangan bulat
Langkah 4
Domain adalah semua nilai dari yang membuat pernyataan tersebut terdefinisi.
Notasi Pembuat Himpunan:
, untuk sebarang bilangan bulat
Langkah 5