Trigonometri Contoh

Selesaikan untuk x sin(x)^2=cos(x)^2+1
Langkah 1
Pindahkan semua pernyataan ke sisi kiri dari persamaan tersebut.
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 1.2
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 2
Sederhanakan .
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Pindahkan .
Langkah 2.2
Susun kembali dan .
Langkah 2.3
Tulis kembali sebagai .
Langkah 2.4
Faktorkan dari .
Langkah 2.5
Faktorkan dari .
Langkah 2.6
Tulis kembali sebagai .
Langkah 2.7
Terapkan identitas pythagoras.
Langkah 2.8
Kurangi dengan .
Langkah 3
Selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 3.1
Bagi setiap suku pada dengan dan sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 3.1.1
Bagilah setiap suku di dengan .
Langkah 3.1.2
Sederhanakan sisi kirinya.
Ketuk untuk lebih banyak langkah...
Langkah 3.1.2.1
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 3.1.2.1.1
Batalkan faktor persekutuan.
Langkah 3.1.2.1.2
Bagilah dengan .
Langkah 3.1.3
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 3.1.3.1
Bagilah dengan .
Langkah 3.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Langkah 3.3
Sederhanakan .
Ketuk untuk lebih banyak langkah...
Langkah 3.3.1
Tulis kembali sebagai .
Langkah 3.3.2
Mengeluarkan suku-suku dari bawah akar, dengan asumsi bahwa bilangan riil positif.
Langkah 3.3.3
Tambah atau kurang adalah .
Langkah 3.4
Ambil kosinus balikan dari kedua sisi persamaan untuk mendapatkan dari dalam kosinus.
Langkah 3.5
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 3.5.1
Nilai eksak dari adalah .
Langkah 3.6
Fungsi kosinus positif pada kuadran pertama dan keempat. Untuk menghitung penyelesaian kedua, kurangi sudut acuan dari untuk menemukan penyelesaian pada kuadran keempat.
Langkah 3.7
Sederhanakan .
Ketuk untuk lebih banyak langkah...
Langkah 3.7.1
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 3.7.2
Gabungkan pecahan.
Ketuk untuk lebih banyak langkah...
Langkah 3.7.2.1
Gabungkan dan .
Langkah 3.7.2.2
Gabungkan pembilang dari penyebut persekutuan.
Langkah 3.7.3
Sederhanakan pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 3.7.3.1
Kalikan dengan .
Langkah 3.7.3.2
Kurangi dengan .
Langkah 3.8
Tentukan periode dari .
Ketuk untuk lebih banyak langkah...
Langkah 3.8.1
Periode fungsi dapat dihitung menggunakan .
Langkah 3.8.2
Ganti dengan dalam rumus untuk periode.
Langkah 3.8.3
Nilai mutlak adalah jarak antara sebuah bilangan dan nol. Jarak antara dan adalah .
Langkah 3.8.4
Bagilah dengan .
Langkah 3.9
Periode dari fungsi adalah sehingga nilai-nilai akan berulang setiap radian di kedua arah.
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat
Langkah 4
Gabungkan jawabannya.
, untuk sebarang bilangan bulat