Masukkan soal...
Trigonometri Contoh
Langkah 1
Ganti dengan berdasarkan identitas .
Langkah 2
Langkah 2.1
Terapkan sifat distributif.
Langkah 2.2
Kalikan dengan .
Langkah 2.3
Kalikan .
Langkah 2.3.1
Kalikan dengan .
Langkah 2.3.2
Kalikan dengan .
Langkah 3
Langkah 3.1
Kurangi dengan .
Langkah 3.2
Tambahkan dan .
Langkah 4
Substitusikan untuk .
Langkah 5
Tambahkan ke kedua sisi persamaan.
Langkah 6
Langkah 6.1
Faktorkan dari .
Langkah 6.2
Naikkan menjadi pangkat .
Langkah 6.3
Faktorkan dari .
Langkah 6.4
Faktorkan dari .
Langkah 7
Jika faktor individu di sisi kiri persamaan sama dengan , seluruh pernyataan akan menjadi sama dengan .
Langkah 8
Atur sama dengan .
Langkah 9
Langkah 9.1
Atur sama dengan .
Langkah 9.2
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 10
Penyelesaian akhirnya adalah semua nilai yang membuat benar.
Langkah 11
Substitusikan untuk .
Langkah 12
Tulis setiap penyelesaian untuk menyelesaikan .
Langkah 13
Langkah 13.1
Ambil kosinus balikan dari kedua sisi persamaan untuk mendapatkan dari dalam kosinus.
Langkah 13.2
Sederhanakan sisi kanannya.
Langkah 13.2.1
Nilai eksak dari adalah .
Langkah 13.3
Fungsi kosinus positif pada kuadran pertama dan keempat. Untuk menghitung penyelesaian kedua, kurangi sudut acuan dari untuk menemukan penyelesaian pada kuadran keempat.
Langkah 13.4
Sederhanakan .
Langkah 13.4.1
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 13.4.2
Gabungkan pecahan.
Langkah 13.4.2.1
Gabungkan dan .
Langkah 13.4.2.2
Gabungkan pembilang dari penyebut persekutuan.
Langkah 13.4.3
Sederhanakan pembilangnya.
Langkah 13.4.3.1
Kalikan dengan .
Langkah 13.4.3.2
Kurangi dengan .
Langkah 13.5
Tentukan periode dari .
Langkah 13.5.1
Periode fungsi dapat dihitung menggunakan .
Langkah 13.5.2
Ganti dengan dalam rumus untuk periode.
Langkah 13.5.3
Nilai mutlak adalah jarak antara sebuah bilangan dan nol. Jarak antara dan adalah .
Langkah 13.5.4
Bagilah dengan .
Langkah 13.6
Periode dari fungsi adalah sehingga nilai-nilai akan berulang setiap radian di kedua arah.
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat
Langkah 14
Langkah 14.1
Ambil kosinus balikan dari kedua sisi persamaan untuk mendapatkan dari dalam kosinus.
Langkah 14.2
Sederhanakan sisi kanannya.
Langkah 14.2.1
Nilai eksak dari adalah .
Langkah 14.3
Fungsi kosinus negatif di kuadran kedua dan ketiga. Untuk menghitung penyelesaian kedua, kurangi sudut acuan dari untuk menghitung penyelesaian di kuadran ketiga.
Langkah 14.4
Kurangi dengan .
Langkah 14.5
Tentukan periode dari .
Langkah 14.5.1
Periode fungsi dapat dihitung menggunakan .
Langkah 14.5.2
Ganti dengan dalam rumus untuk periode.
Langkah 14.5.3
Nilai mutlak adalah jarak antara sebuah bilangan dan nol. Jarak antara dan adalah .
Langkah 14.5.4
Bagilah dengan .
Langkah 14.6
Periode dari fungsi adalah sehingga nilai-nilai akan berulang setiap radian di kedua arah.
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat
Langkah 15
Sebutkan semua penyelesaiannya.
, untuk sebarang bilangan bulat
Langkah 16
Gabungkan dan menjadi .
, untuk sebarang bilangan bulat