Trigonometri Contoh

Konversi menjadi Notasi Interval arcsin(x)>pi/3
Langkah 1
Ambil balikan arcsinus dari kedua sisi persamaan untuk mendapatkan dari dalam arcsinus.
Langkah 2
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Nilai eksak dari adalah .
Langkah 3
Tentukan domain dari .
Ketuk untuk lebih banyak langkah...
Langkah 3.1
Atur argumen dalam agar lebih besar dari atau sama dengan untuk menentukan di mana pernyataannya terdefinisi.
Langkah 3.2
Atur argumen dalam agar lebih kecil dari atau sama dengan untuk menentukan di mana pernyataannya terdefinisi.
Langkah 3.3
Domain adalah semua nilai dari yang membuat pernyataan tersebut terdefinisi.
Langkah 4
Gunakan masing-masing akar untuk membuat interval pengujian.
Langkah 5
Pilih nilai uji dari masing-masing interval dan masukkan nilai ini ke dalam pertidaksamaan asal untuk menentukan interval mana yang memenuhi pertidaksamaan.
Ketuk untuk lebih banyak langkah...
Langkah 5.1
Uji nilai pada interval untuk melihat apakah nilai ini membuat pertidaksamaan bernilai benar.
Ketuk untuk lebih banyak langkah...
Langkah 5.1.1
Pilih nilai pada interval dan lihat apakah nilai ini membuat pertidaksamaan asal bernilai benar.
Langkah 5.1.2
Ganti dengan pada pertidaksamaan asal.
Langkah 5.1.3
Sisi kiri tidak lebih besar dari sisi kanan , yang berarti pernyataan yang diberikan salah.
False
False
Langkah 5.2
Uji nilai pada interval untuk melihat apakah nilai ini membuat pertidaksamaan bernilai benar.
Ketuk untuk lebih banyak langkah...
Langkah 5.2.1
Pilih nilai pada interval dan lihat apakah nilai ini membuat pertidaksamaan asal bernilai benar.
Langkah 5.2.2
Ganti dengan pada pertidaksamaan asal.
Langkah 5.2.3
Sisi kiri tidak lebih besar dari sisi kanan , yang berarti pernyataan yang diberikan salah.
False
False
Langkah 5.3
Uji nilai pada interval untuk melihat apakah nilai ini membuat pertidaksamaan bernilai benar.
Ketuk untuk lebih banyak langkah...
Langkah 5.3.1
Pilih nilai pada interval dan lihat apakah nilai ini membuat pertidaksamaan asal bernilai benar.
Langkah 5.3.2
Ganti dengan pada pertidaksamaan asal.
Langkah 5.3.3
Sisi kiri lebih besar dari sisi kanan , yang berarti pernyataan yang diberikan selalu benar.
True
True
Langkah 5.4
Uji nilai pada interval untuk melihat apakah nilai ini membuat pertidaksamaan bernilai benar.
Ketuk untuk lebih banyak langkah...
Langkah 5.4.1
Pilih nilai pada interval dan lihat apakah nilai ini membuat pertidaksamaan asal bernilai benar.
Langkah 5.4.2
Ganti dengan pada pertidaksamaan asal.
Langkah 5.4.3
Sisi kiri tidak lebih besar dari sisi kanan , yang berarti pernyataan yang diberikan salah.
False
False
Langkah 5.5
Bandingkan interval untuk menentukan mana yang memenuhi pertidaksamaan asal.
Salah
Salah
Benar
Salah
Salah
Salah
Benar
Salah
Langkah 6
Penyelesaian tersebut terdiri dari semua interval hakiki.
Langkah 7
Konversikan pertidaksamaan ke notasi interval.
Langkah 8