Trigonometri Contoh

Selesaikan Sistem dari @WORD sin(x)<0 , tan(x)<0
,
Langkah 1
Selesaikan untuk .
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Ambil sinus balikan dari kedua sisi persamaan untuk mendapatkan dari dalam sinus.
Langkah 1.2
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 1.2.1
Nilai eksak dari adalah .
Langkah 1.3
Fungsi sinus positif di kuadran pertama dan kedua. Untuk menemukan penyelesaian kedua, kurangi sudut acuan dari untuk menemukan penyelesaian di kuadran kedua.
Langkah 1.4
Kurangi dengan .
Langkah 1.5
Tentukan periode dari .
Ketuk untuk lebih banyak langkah...
Langkah 1.5.1
Periode fungsi dapat dihitung menggunakan .
Langkah 1.5.2
Ganti dengan dalam rumus untuk periode.
Langkah 1.5.3
Nilai mutlak adalah jarak antara sebuah bilangan dan nol. Jarak antara dan adalah .
Langkah 1.5.4
Bagilah dengan .
Langkah 1.6
Periode dari fungsi adalah sehingga nilai-nilai akan berulang setiap radian di kedua arah.
, untuk sebarang bilangan bulat
Langkah 1.7
Gabungkan jawabannya.
, untuk sebarang bilangan bulat
Langkah 1.8
Gunakan masing-masing akar untuk membuat interval pengujian.
Langkah 1.9
Pilih nilai uji dari masing-masing interval dan masukkan nilai ini ke dalam pertidaksamaan asal untuk menentukan interval mana yang memenuhi pertidaksamaan.
Ketuk untuk lebih banyak langkah...
Langkah 1.9.1
Uji nilai pada interval untuk melihat apakah nilai ini membuat pertidaksamaan bernilai benar.
Ketuk untuk lebih banyak langkah...
Langkah 1.9.1.1
Pilih nilai pada interval dan lihat apakah nilai ini membuat pertidaksamaan asal bernilai benar.
Langkah 1.9.1.2
Ganti dengan pada pertidaksamaan asal.
Langkah 1.9.1.3
Sisi kiri tidak lebih kecil dari sisi kanan , yang berarti pernyataan yang diberikan salah.
False
False
Langkah 1.9.2
Uji nilai pada interval untuk melihat apakah nilai ini membuat pertidaksamaan bernilai benar.
Ketuk untuk lebih banyak langkah...
Langkah 1.9.2.1
Pilih nilai pada interval dan lihat apakah nilai ini membuat pertidaksamaan asal bernilai benar.
Langkah 1.9.2.2
Ganti dengan pada pertidaksamaan asal.
Langkah 1.9.2.3
Sisi kiri lebih kecil dari sisi kanan , yang berarti pernyataan yang diberikan selalu benar.
True
True
Langkah 1.9.3
Bandingkan interval untuk menentukan mana yang memenuhi pertidaksamaan asal.
Salah
Benar
Salah
Benar
Langkah 1.10
Penyelesaian tersebut terdiri dari semua interval hakiki.
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat
Langkah 2
Selesaikan untuk .
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Ambil tangen balikan dari kedua sisi persamaan untuk mendapatkan dari dalam tangen.
Langkah 2.2
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 2.2.1
Nilai eksak dari adalah .
Langkah 2.3
Fungsi tangen positif di kuadran pertama dan ketiga. Untuk mencari penyelesaian kedua, tambahkan sudut acuan dari untuk mencari penyelesaiannya di kuadran keempat.
Langkah 2.4
Tambahkan dan .
Langkah 2.5
Tentukan periode dari .
Ketuk untuk lebih banyak langkah...
Langkah 2.5.1
Periode fungsi dapat dihitung menggunakan .
Langkah 2.5.2
Ganti dengan dalam rumus untuk periode.
Langkah 2.5.3
Nilai mutlak adalah jarak antara sebuah bilangan dan nol. Jarak antara dan adalah .
Langkah 2.5.4
Bagilah dengan .
Langkah 2.6
Periode dari fungsi adalah sehingga nilai-nilai akan berulang setiap radian di kedua arah.
, untuk sebarang bilangan bulat
Langkah 2.7
Gabungkan jawabannya.
, untuk sebarang bilangan bulat
Langkah 2.8
Tentukan domain dari .
Ketuk untuk lebih banyak langkah...
Langkah 2.8.1
Atur argumen dalam agar sama dengan untuk menentukan di mana pernyataannya tidak terdefinisi.
, untuk sebarang bilangan bulat
Langkah 2.8.2
Domain adalah semua nilai dari yang membuat pernyataan tersebut terdefinisi.
, untuk bilangan bulat apa pun
, untuk bilangan bulat apa pun
Langkah 2.9
Gunakan masing-masing akar untuk membuat interval pengujian.
Langkah 2.10
Pilih nilai uji dari masing-masing interval dan masukkan nilai ini ke dalam pertidaksamaan asal untuk menentukan interval mana yang memenuhi pertidaksamaan.
Ketuk untuk lebih banyak langkah...
Langkah 2.10.1
Uji nilai pada interval untuk melihat apakah nilai ini membuat pertidaksamaan bernilai benar.
Ketuk untuk lebih banyak langkah...
Langkah 2.10.1.1
Pilih nilai pada interval dan lihat apakah nilai ini membuat pertidaksamaan asal bernilai benar.
Langkah 2.10.1.2
Ganti dengan pada pertidaksamaan asal.
Langkah 2.10.1.3
Sisi kiri tidak lebih kecil dari sisi kanan , yang berarti pernyataan yang diberikan salah.
False
False
Langkah 2.10.2
Uji nilai pada interval untuk melihat apakah nilai ini membuat pertidaksamaan bernilai benar.
Ketuk untuk lebih banyak langkah...
Langkah 2.10.2.1
Pilih nilai pada interval dan lihat apakah nilai ini membuat pertidaksamaan asal bernilai benar.
Langkah 2.10.2.2
Ganti dengan pada pertidaksamaan asal.
Langkah 2.10.2.3
Sisi kiri lebih kecil dari sisi kanan , yang berarti pernyataan yang diberikan selalu benar.
True
True
Langkah 2.10.3
Bandingkan interval untuk menentukan mana yang memenuhi pertidaksamaan asal.
Salah
Benar
Salah
Benar
Langkah 2.11
Penyelesaian tersebut terdiri dari semua interval hakiki.
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat
Langkah 3
Tentukan irisan dari dan .
Tidak ada penyelesaian