Masukkan soal...
Trigonometri Contoh
Langkah 1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Langkah 2
Langkah 2.1
Tulis kembali sebagai .
Langkah 2.2
Mengeluarkan suku-suku dari bawah akar, dengan asumsi bahwa bilangan riil positif.
Langkah 3
Langkah 3.1
Pertama, gunakan nilai positif dari untuk menemukan penyelesaian pertama.
Langkah 3.2
Selanjutnya, gunakan nilai negatif dari untuk menemukan penyelesaian kedua.
Langkah 3.3
Penyelesaian lengkap adalah hasil dari bagian positif dan negatif dari penyelesaian tersebut.
Langkah 4
Tulis setiap penyelesaian untuk menyelesaikan .
Langkah 5
Langkah 5.1
Ambil kosekan balikan dari kedua sisi persamaan untuk mendapatkan dari dalam kosekan.
Langkah 5.2
Sederhanakan sisi kanannya.
Langkah 5.2.1
Nilai eksak dari adalah .
Langkah 5.3
Fungsi kosekan positif di kuadran pertama dan kedua. Untuk menghitung penyelesaian kedua, kurangi sudut acuan dari untuk mencari penyelesaian di kuadran kedua.
Langkah 5.4
Sederhanakan .
Langkah 5.4.1
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 5.4.2
Gabungkan pecahan.
Langkah 5.4.2.1
Gabungkan dan .
Langkah 5.4.2.2
Gabungkan pembilang dari penyebut persekutuan.
Langkah 5.4.3
Sederhanakan pembilangnya.
Langkah 5.4.3.1
Pindahkan ke sebelah kiri .
Langkah 5.4.3.2
Kurangi dengan .
Langkah 5.5
Tentukan periode dari .
Langkah 5.5.1
Periode fungsi dapat dihitung menggunakan .
Langkah 5.5.2
Ganti dengan dalam rumus untuk periode.
Langkah 5.5.3
Nilai mutlak adalah jarak antara sebuah bilangan dan nol. Jarak antara dan adalah .
Langkah 5.5.4
Bagilah dengan .
Langkah 5.6
Periode dari fungsi adalah sehingga nilai-nilai akan berulang setiap radian di kedua arah.
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat
Langkah 6
Langkah 6.1
Ambil kosekan balikan dari kedua sisi persamaan untuk mendapatkan dari dalam kosekan.
Langkah 6.2
Sederhanakan sisi kanannya.
Langkah 6.2.1
Nilai eksak dari adalah .
Langkah 6.3
The cosecant function is negative in the third and fourth quadrants. To find the second solution, subtract the solution from , to find a reference angle. Next, add this reference angle to to find the solution in the third quadrant.
Langkah 6.4
Sederhanakan pernyataan untuk menentukan penyelesaian yang kedua.
Langkah 6.4.1
Kurangi dengan .
Langkah 6.4.2
Sudut yang dihasilkan dari positif, lebih kecil dari , dan koterminal dengan .
Langkah 6.5
Tentukan periode dari .
Langkah 6.5.1
Periode fungsi dapat dihitung menggunakan .
Langkah 6.5.2
Ganti dengan dalam rumus untuk periode.
Langkah 6.5.3
Nilai mutlak adalah jarak antara sebuah bilangan dan nol. Jarak antara dan adalah .
Langkah 6.5.4
Bagilah dengan .
Langkah 6.6
Tambahkan ke setiap sudut negatif untuk memperoleh sudut positif.
Langkah 6.6.1
Tambahkan ke untuk menentukan sudut positif.
Langkah 6.6.2
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 6.6.3
Gabungkan pecahan.
Langkah 6.6.3.1
Gabungkan dan .
Langkah 6.6.3.2
Gabungkan pembilang dari penyebut persekutuan.
Langkah 6.6.4
Sederhanakan pembilangnya.
Langkah 6.6.4.1
Kalikan dengan .
Langkah 6.6.4.2
Kurangi dengan .
Langkah 6.6.5
Sebutkan sudut-sudut barunya.
Langkah 6.7
Periode dari fungsi adalah sehingga nilai-nilai akan berulang setiap radian di kedua arah.
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat
Langkah 7
Sebutkan semua penyelesaiannya.
, untuk sebarang bilangan bulat
Langkah 8
Langkah 8.1
Gabungkan dan menjadi .
, untuk sebarang bilangan bulat
Langkah 8.2
Gabungkan dan menjadi .
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat