Trigonometri Contoh

Selesaikan untuk x sin(4x)- akar kuadrat dari 2sin(2x)=0
Langkah 1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Faktorkan dari .
Langkah 1.2
Terapkan identitas sudut ganda sinus.
Langkah 1.3
Kalikan dengan .
Langkah 1.4
Gunakan identitas sudut ganda untuk mengubah menjadi .
Langkah 1.5
Terapkan sifat distributif.
Langkah 1.6
Kalikan dengan .
Langkah 1.7
Kalikan dengan dengan menambahkan eksponennya.
Ketuk untuk lebih banyak langkah...
Langkah 1.7.1
Pindahkan .
Langkah 1.7.2
Kalikan dengan .
Ketuk untuk lebih banyak langkah...
Langkah 1.7.2.1
Naikkan menjadi pangkat .
Langkah 1.7.2.2
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 1.7.3
Tambahkan dan .
Langkah 1.8
Kalikan dengan .
Langkah 1.9
Terapkan identitas sudut ganda sinus.
Langkah 1.10
Kalikan dengan .
Langkah 2
Faktorkan .
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Faktorkan dari .
Ketuk untuk lebih banyak langkah...
Langkah 2.1.1
Faktorkan dari .
Langkah 2.1.2
Faktorkan dari .
Langkah 2.1.3
Faktorkan dari .
Langkah 2.1.4
Faktorkan dari .
Langkah 2.1.5
Faktorkan dari .
Langkah 2.2
Susun kembali suku-suku.
Langkah 3
Jika faktor individu di sisi kiri persamaan sama dengan , seluruh pernyataan akan menjadi sama dengan .
Langkah 4
Atur agar sama dengan dan selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 4.1
Atur sama dengan .
Langkah 4.2
Selesaikan untuk .
Ketuk untuk lebih banyak langkah...
Langkah 4.2.1
Ambil sinus balikan dari kedua sisi persamaan untuk mendapatkan dari dalam sinus.
Langkah 4.2.2
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 4.2.2.1
Nilai eksak dari adalah .
Langkah 4.2.3
Fungsi sinus positif di kuadran pertama dan kedua. Untuk menemukan penyelesaian kedua, kurangi sudut acuan dari untuk menemukan penyelesaian di kuadran kedua.
Langkah 4.2.4
Kurangi dengan .
Langkah 4.2.5
Tentukan periode dari .
Ketuk untuk lebih banyak langkah...
Langkah 4.2.5.1
Periode fungsi dapat dihitung menggunakan .
Langkah 4.2.5.2
Ganti dengan dalam rumus untuk periode.
Langkah 4.2.5.3
Nilai mutlak adalah jarak antara sebuah bilangan dan nol. Jarak antara dan adalah .
Langkah 4.2.5.4
Bagilah dengan .
Langkah 4.2.6
Periode dari fungsi adalah sehingga nilai-nilai akan berulang setiap radian di kedua arah.
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat
Langkah 5
Atur agar sama dengan dan selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 5.1
Atur sama dengan .
Langkah 5.2
Selesaikan untuk .
Ketuk untuk lebih banyak langkah...
Langkah 5.2.1
Ambil kosinus balikan dari kedua sisi persamaan untuk mendapatkan dari dalam kosinus.
Langkah 5.2.2
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 5.2.2.1
Nilai eksak dari adalah .
Langkah 5.2.3
Fungsi kosinus positif pada kuadran pertama dan keempat. Untuk menghitung penyelesaian kedua, kurangi sudut acuan dari untuk menemukan penyelesaian pada kuadran keempat.
Langkah 5.2.4
Sederhanakan .
Ketuk untuk lebih banyak langkah...
Langkah 5.2.4.1
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 5.2.4.2
Gabungkan pecahan.
Ketuk untuk lebih banyak langkah...
Langkah 5.2.4.2.1
Gabungkan dan .
Langkah 5.2.4.2.2
Gabungkan pembilang dari penyebut persekutuan.
Langkah 5.2.4.3
Sederhanakan pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 5.2.4.3.1
Kalikan dengan .
Langkah 5.2.4.3.2
Kurangi dengan .
Langkah 5.2.5
Tentukan periode dari .
Ketuk untuk lebih banyak langkah...
Langkah 5.2.5.1
Periode fungsi dapat dihitung menggunakan .
Langkah 5.2.5.2
Ganti dengan dalam rumus untuk periode.
Langkah 5.2.5.3
Nilai mutlak adalah jarak antara sebuah bilangan dan nol. Jarak antara dan adalah .
Langkah 5.2.5.4
Bagilah dengan .
Langkah 5.2.6
Periode dari fungsi adalah sehingga nilai-nilai akan berulang setiap radian di kedua arah.
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat
Langkah 6
Atur agar sama dengan dan selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 6.1
Atur sama dengan .
Langkah 6.2
Selesaikan untuk .
Ketuk untuk lebih banyak langkah...
Langkah 6.2.1
Pindahkan semua suku yang tidak mengandung ke sisi kanan dari persamaan.
Ketuk untuk lebih banyak langkah...
Langkah 6.2.1.1
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 6.2.1.2
Tambahkan ke kedua sisi persamaan.
Langkah 6.2.2
Bagi setiap suku pada dengan dan sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 6.2.2.1
Bagilah setiap suku di dengan .
Langkah 6.2.2.2
Sederhanakan sisi kirinya.
Ketuk untuk lebih banyak langkah...
Langkah 6.2.2.2.1
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 6.2.2.2.1.1
Batalkan faktor persekutuan.
Langkah 6.2.2.2.1.2
Bagilah dengan .
Langkah 6.2.2.3
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 6.2.2.3.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 6.2.2.3.1.1
Hapus faktor persekutuan dari dan .
Ketuk untuk lebih banyak langkah...
Langkah 6.2.2.3.1.1.1
Faktorkan dari .
Langkah 6.2.2.3.1.1.2
Batalkan faktor persekutuan.
Ketuk untuk lebih banyak langkah...
Langkah 6.2.2.3.1.1.2.1
Faktorkan dari .
Langkah 6.2.2.3.1.1.2.2
Batalkan faktor persekutuan.
Langkah 6.2.2.3.1.1.2.3
Tulis kembali pernyataannya.
Langkah 6.2.2.3.1.2
Pindahkan tanda negatif di depan pecahan.
Langkah 6.2.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Langkah 6.2.4
Sederhanakan .
Ketuk untuk lebih banyak langkah...
Langkah 6.2.4.1
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 6.2.4.2
Tulis setiap pernyataan menggunakan penyebut umum dari , dengan mengalikan masing-masing pembilang dan penyebut dengan faktor dari yang sesuai.
Ketuk untuk lebih banyak langkah...
Langkah 6.2.4.2.1
Kalikan dengan .
Langkah 6.2.4.2.2
Kalikan dengan .
Langkah 6.2.4.3
Gabungkan pembilang dari penyebut persekutuan.
Langkah 6.2.4.4
Tulis kembali sebagai .
Langkah 6.2.4.5
Sederhanakan penyebutnya.
Ketuk untuk lebih banyak langkah...
Langkah 6.2.4.5.1
Tulis kembali sebagai .
Langkah 6.2.4.5.2
Mengeluarkan suku-suku dari bawah akar, dengan asumsi bahwa bilangan riil positif.
Langkah 6.2.5
Penyelesaian lengkap adalah hasil dari bagian positif dan negatif dari penyelesaian tersebut.
Ketuk untuk lebih banyak langkah...
Langkah 6.2.5.1
Pertama, gunakan nilai positif dari untuk menemukan penyelesaian pertama.
Langkah 6.2.5.2
Selanjutnya, gunakan nilai negatif dari untuk menemukan penyelesaian kedua.
Langkah 6.2.5.3
Penyelesaian lengkap adalah hasil dari bagian positif dan negatif dari penyelesaian tersebut.
Langkah 6.2.6
Tulis setiap penyelesaian untuk menyelesaikan .
Langkah 6.2.7
Selesaikan dalam .
Ketuk untuk lebih banyak langkah...
Langkah 6.2.7.1
Ambil sinus balikan dari kedua sisi persamaan untuk mendapatkan dari dalam sinus.
Langkah 6.2.7.2
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 6.2.7.2.1
Evaluasi .
Langkah 6.2.7.3
Fungsi sinus positif di kuadran pertama dan kedua. Untuk menemukan penyelesaian kedua, kurangi sudut acuan dari untuk menemukan penyelesaian di kuadran kedua.
Langkah 6.2.7.4
Sederhanakan .
Ketuk untuk lebih banyak langkah...
Langkah 6.2.7.4.1
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 6.2.7.4.2
Gabungkan pecahan.
Ketuk untuk lebih banyak langkah...
Langkah 6.2.7.4.2.1
Gabungkan dan .
Langkah 6.2.7.4.2.2
Gabungkan pembilang dari penyebut persekutuan.
Langkah 6.2.7.4.3
Sederhanakan pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 6.2.7.4.3.1
Pindahkan ke sebelah kiri .
Langkah 6.2.7.4.3.2
Kurangi dengan .
Langkah 6.2.7.5
Tentukan periode dari .
Ketuk untuk lebih banyak langkah...
Langkah 6.2.7.5.1
Periode fungsi dapat dihitung menggunakan .
Langkah 6.2.7.5.2
Ganti dengan dalam rumus untuk periode.
Langkah 6.2.7.5.3
Nilai mutlak adalah jarak antara sebuah bilangan dan nol. Jarak antara dan adalah .
Langkah 6.2.7.5.4
Bagilah dengan .
Langkah 6.2.7.6
Periode dari fungsi adalah sehingga nilai-nilai akan berulang setiap radian di kedua arah.
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat
Langkah 6.2.8
Selesaikan dalam .
Ketuk untuk lebih banyak langkah...
Langkah 6.2.8.1
Ambil sinus balikan dari kedua sisi persamaan untuk mendapatkan dari dalam sinus.
Langkah 6.2.8.2
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 6.2.8.2.1
Evaluasi .
Langkah 6.2.8.3
Fungsi sinus negatif pada kuadran ketiga dan keempat. Untuk menemukan penyelesaian kedua, kurangi penyelesaian dari , untuk mencari sudut acuan. Selanjutnya, tambahkan sudut acuan ini ke untuk mencari penyelesaian pada kuadran ketiga.
Langkah 6.2.8.4
Sederhanakan pernyataan untuk menentukan penyelesaian yang kedua.
Ketuk untuk lebih banyak langkah...
Langkah 6.2.8.4.1
Kurangi dengan .
Langkah 6.2.8.4.2
Sudut yang dihasilkan dari positif, lebih kecil dari , dan koterminal dengan .
Langkah 6.2.8.5
Tentukan periode dari .
Ketuk untuk lebih banyak langkah...
Langkah 6.2.8.5.1
Periode fungsi dapat dihitung menggunakan .
Langkah 6.2.8.5.2
Ganti dengan dalam rumus untuk periode.
Langkah 6.2.8.5.3
Nilai mutlak adalah jarak antara sebuah bilangan dan nol. Jarak antara dan adalah .
Langkah 6.2.8.5.4
Bagilah dengan .
Langkah 6.2.8.6
Tambahkan ke setiap sudut negatif untuk memperoleh sudut positif.
Ketuk untuk lebih banyak langkah...
Langkah 6.2.8.6.1
Tambahkan ke untuk menentukan sudut positif.
Langkah 6.2.8.6.2
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 6.2.8.6.3
Gabungkan pecahan.
Ketuk untuk lebih banyak langkah...
Langkah 6.2.8.6.3.1
Gabungkan dan .
Langkah 6.2.8.6.3.2
Gabungkan pembilang dari penyebut persekutuan.
Langkah 6.2.8.6.4
Sederhanakan pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 6.2.8.6.4.1
Kalikan dengan .
Langkah 6.2.8.6.4.2
Kurangi dengan .
Langkah 6.2.8.6.5
Sebutkan sudut-sudut barunya.
Langkah 6.2.8.7
Periode dari fungsi adalah sehingga nilai-nilai akan berulang setiap radian di kedua arah.
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat
Langkah 6.2.9
Sebutkan semua penyelesaiannya.
, untuk sebarang bilangan bulat
Langkah 6.2.10
Gabungkan penyelesaiannya.
Ketuk untuk lebih banyak langkah...
Langkah 6.2.10.1
Gabungkan dan menjadi .
, untuk sebarang bilangan bulat
Langkah 6.2.10.2
Gabungkan dan menjadi .
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat
Langkah 7
Penyelesaian akhirnya adalah semua nilai yang membuat benar.
, untuk sebarang bilangan bulat
Langkah 8
Gabungkan jawabannya.
Ketuk untuk lebih banyak langkah...
Langkah 8.1
Gabungkan dan menjadi .
, untuk sebarang bilangan bulat
Langkah 8.2
Gabungkan dan menjadi .
, untuk sebarang bilangan bulat
Langkah 8.3
Gabungkan dan menjadi .
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat