Masukkan soal...
Trigonometri Contoh
Langkah 1
Tambahkan ke kedua sisi persamaan.
Langkah 2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Langkah 3
Sebarang akar dari adalah .
Langkah 4
Langkah 4.1
Pertama, gunakan nilai positif dari untuk menemukan penyelesaian pertama.
Langkah 4.2
Selanjutnya, gunakan nilai negatif dari untuk menemukan penyelesaian kedua.
Langkah 4.3
Penyelesaian lengkap adalah hasil dari bagian positif dan negatif dari penyelesaian tersebut.
Langkah 5
Tulis setiap penyelesaian untuk menyelesaikan .
Langkah 6
Langkah 6.1
Ambil tangen balikan dari kedua sisi persamaan untuk mendapatkan dari dalam tangen.
Langkah 6.2
Sederhanakan sisi kanannya.
Langkah 6.2.1
Nilai eksak dari adalah .
Langkah 6.3
Fungsi tangen positif di kuadran pertama dan ketiga. Untuk mencari penyelesaian kedua, tambahkan sudut acuan dari untuk mencari penyelesaiannya di kuadran keempat.
Langkah 6.4
Sederhanakan .
Langkah 6.4.1
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 6.4.2
Gabungkan pecahan.
Langkah 6.4.2.1
Gabungkan dan .
Langkah 6.4.2.2
Gabungkan pembilang dari penyebut persekutuan.
Langkah 6.4.3
Sederhanakan pembilangnya.
Langkah 6.4.3.1
Pindahkan ke sebelah kiri .
Langkah 6.4.3.2
Tambahkan dan .
Langkah 6.5
Tentukan periode dari .
Langkah 6.5.1
Periode fungsi dapat dihitung menggunakan .
Langkah 6.5.2
Ganti dengan dalam rumus untuk periode.
Langkah 6.5.3
Nilai mutlak adalah jarak antara sebuah bilangan dan nol. Jarak antara dan adalah .
Langkah 6.5.4
Bagilah dengan .
Langkah 6.6
Periode dari fungsi adalah sehingga nilai-nilai akan berulang setiap radian di kedua arah.
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat
Langkah 7
Langkah 7.1
Ambil tangen balikan dari kedua sisi persamaan untuk mendapatkan dari dalam tangen.
Langkah 7.2
Sederhanakan sisi kanannya.
Langkah 7.2.1
Nilai eksak dari adalah .
Langkah 7.3
Fungsi tangen negatif pada kuadran kedua dan keempat. Untuk mencari penyelesaian kedua, kurangi sudut acuan dari untuk mencari penyelesaian di kuadran ketiga.
Langkah 7.4
Sederhanakan pernyataan untuk menentukan penyelesaian yang kedua.
Langkah 7.4.1
Tambahkan ke .
Langkah 7.4.2
Sudut yang dihasilkan dari positif dan koterminal dengan .
Langkah 7.5
Tentukan periode dari .
Langkah 7.5.1
Periode fungsi dapat dihitung menggunakan .
Langkah 7.5.2
Ganti dengan dalam rumus untuk periode.
Langkah 7.5.3
Nilai mutlak adalah jarak antara sebuah bilangan dan nol. Jarak antara dan adalah .
Langkah 7.5.4
Bagilah dengan .
Langkah 7.6
Tambahkan ke setiap sudut negatif untuk memperoleh sudut positif.
Langkah 7.6.1
Tambahkan ke untuk menentukan sudut positif.
Langkah 7.6.2
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 7.6.3
Gabungkan pecahan.
Langkah 7.6.3.1
Gabungkan dan .
Langkah 7.6.3.2
Gabungkan pembilang dari penyebut persekutuan.
Langkah 7.6.4
Sederhanakan pembilangnya.
Langkah 7.6.4.1
Pindahkan ke sebelah kiri .
Langkah 7.6.4.2
Kurangi dengan .
Langkah 7.6.5
Sebutkan sudut-sudut barunya.
Langkah 7.7
Periode dari fungsi adalah sehingga nilai-nilai akan berulang setiap radian di kedua arah.
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat
Langkah 8
Sebutkan semua penyelesaiannya.
, untuk sebarang bilangan bulat
Langkah 9
Gabungkan jawabannya.
, untuk sebarang bilangan bulat