Trigonometri Contoh

Selesaikan untuk θ dalam Derajat 6tan(theta)^2-10tan(theta)+1=-5tan(theta)
Langkah 1
Tambahkan ke kedua sisi persamaan.
Langkah 2
Tambahkan dan .
Langkah 3
Faktorkan dengan pengelompokan.
Ketuk untuk lebih banyak langkah...
Langkah 3.1
Susun kembali suku-suku.
Langkah 3.2
Untuk polinomial dari bentuk , tulis kembali suku tengahnya sebagai penjumlahan dari dua suku yang hasil kalinya adalah dan yang jumlahnya adalah .
Ketuk untuk lebih banyak langkah...
Langkah 3.2.1
Faktorkan dari .
Langkah 3.2.2
Tulis kembali sebagai ditambah
Langkah 3.2.3
Terapkan sifat distributif.
Langkah 3.3
Faktorkan faktor persekutuan terbesar dari setiap kelompok.
Ketuk untuk lebih banyak langkah...
Langkah 3.3.1
Kelompokkan dua suku pertama dan dua suku terakhir.
Langkah 3.3.2
Faktorkan faktor persekutuan terbesar (FPB) dari setiap kelompok.
Langkah 3.4
Faktorkan polinomial dengan memfaktorkan faktor persekutuan terbesar, .
Langkah 4
Jika faktor individu di sisi kiri persamaan sama dengan , seluruh pernyataan akan menjadi sama dengan .
Langkah 5
Atur agar sama dengan dan selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 5.1
Atur sama dengan .
Langkah 5.2
Selesaikan untuk .
Ketuk untuk lebih banyak langkah...
Langkah 5.2.1
Tambahkan ke kedua sisi persamaan.
Langkah 5.2.2
Bagi setiap suku pada dengan dan sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 5.2.2.1
Bagilah setiap suku di dengan .
Langkah 5.2.2.2
Sederhanakan sisi kirinya.
Ketuk untuk lebih banyak langkah...
Langkah 5.2.2.2.1
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 5.2.2.2.1.1
Batalkan faktor persekutuan.
Langkah 5.2.2.2.1.2
Bagilah dengan .
Langkah 5.2.3
Ambil tangen balikan dari kedua sisi persamaan untuk mendapatkan dari dalam tangen.
Langkah 5.2.4
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 5.2.4.1
Evaluasi .
Langkah 5.2.5
Fungsi tangen positif di kuadran pertama dan ketiga. Untuk mencari penyelesaian kedua, kurangi sudut acuan dari untuk mencari penyelesaian di kuadran keempat.
Langkah 5.2.6
Tambahkan dan .
Langkah 5.2.7
Tentukan periode dari .
Ketuk untuk lebih banyak langkah...
Langkah 5.2.7.1
Periode fungsi dapat dihitung menggunakan .
Langkah 5.2.7.2
Ganti dengan dalam rumus untuk periode.
Langkah 5.2.7.3
Nilai mutlak adalah jarak antara sebuah bilangan dan nol. Jarak antara dan adalah .
Langkah 5.2.7.4
Bagilah dengan .
Langkah 5.2.8
Periode dari fungsi adalah sehingga nilai akan berulang setiap derajat di kedua arah.
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat
Langkah 6
Atur agar sama dengan dan selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 6.1
Atur sama dengan .
Langkah 6.2
Selesaikan untuk .
Ketuk untuk lebih banyak langkah...
Langkah 6.2.1
Tambahkan ke kedua sisi persamaan.
Langkah 6.2.2
Bagi setiap suku pada dengan dan sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 6.2.2.1
Bagilah setiap suku di dengan .
Langkah 6.2.2.2
Sederhanakan sisi kirinya.
Ketuk untuk lebih banyak langkah...
Langkah 6.2.2.2.1
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 6.2.2.2.1.1
Batalkan faktor persekutuan.
Langkah 6.2.2.2.1.2
Bagilah dengan .
Langkah 6.2.3
Ambil tangen balikan dari kedua sisi persamaan untuk mendapatkan dari dalam tangen.
Langkah 6.2.4
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 6.2.4.1
Evaluasi .
Langkah 6.2.5
Fungsi tangen positif di kuadran pertama dan ketiga. Untuk mencari penyelesaian kedua, kurangi sudut acuan dari untuk mencari penyelesaian di kuadran keempat.
Langkah 6.2.6
Tambahkan dan .
Langkah 6.2.7
Tentukan periode dari .
Ketuk untuk lebih banyak langkah...
Langkah 6.2.7.1
Periode fungsi dapat dihitung menggunakan .
Langkah 6.2.7.2
Ganti dengan dalam rumus untuk periode.
Langkah 6.2.7.3
Nilai mutlak adalah jarak antara sebuah bilangan dan nol. Jarak antara dan adalah .
Langkah 6.2.7.4
Bagilah dengan .
Langkah 6.2.8
Periode dari fungsi adalah sehingga nilai akan berulang setiap derajat di kedua arah.
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat
Langkah 7
Penyelesaian akhirnya adalah semua nilai yang membuat benar.
, untuk sebarang bilangan bulat
Langkah 8
Gabungkan jawabannya.
Ketuk untuk lebih banyak langkah...
Langkah 8.1
Gabungkan dan menjadi .
, untuk sebarang bilangan bulat
Langkah 8.2
Gabungkan dan menjadi .
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat