Masukkan soal...
Trigonometri Contoh
Langkah 1
Langkah 1.1
Bagilah setiap suku di dengan .
Langkah 1.2
Sederhanakan sisi kirinya.
Langkah 1.2.1
Batalkan faktor persekutuan dari .
Langkah 1.2.1.1
Batalkan faktor persekutuan.
Langkah 1.2.1.2
Bagilah dengan .
Langkah 2
Ambil akar yang ditentukan dari kedua sisi persamaan untuk menghilangkan eksponen di sisi kiri.
Langkah 3
Langkah 3.1
Tulis kembali sebagai .
Langkah 3.2
Sederhanakan penyebutnya.
Langkah 3.2.1
Tulis kembali sebagai .
Langkah 3.2.2
Mengeluarkan suku-suku dari bawah akar, dengan asumsi bahwa bilangan riil positif.
Langkah 4
Langkah 4.1
Pertama, gunakan nilai positif dari untuk menemukan penyelesaian pertama.
Langkah 4.2
Selanjutnya, gunakan nilai negatif dari untuk menemukan penyelesaian kedua.
Langkah 4.3
Penyelesaian lengkap adalah hasil dari bagian positif dan negatif dari penyelesaian tersebut.
Langkah 5
Tulis setiap penyelesaian untuk menyelesaikan .
Langkah 6
Langkah 6.1
Ambil sinus balikan dari kedua sisi persamaan untuk mendapatkan dari dalam sinus.
Langkah 6.2
Sederhanakan sisi kanannya.
Langkah 6.2.1
Nilai eksak dari adalah .
Langkah 6.3
Fungsi sinus positif di kuadran pertama dan kedua. Untuk menemukan penyelesaian kedua, kurangi sudut acuan dari untuk menemukan penyelesaian di kuadran kedua.
Langkah 6.4
Kurangi dengan .
Langkah 6.5
Tentukan periode dari .
Langkah 6.5.1
Periode fungsi dapat dihitung menggunakan .
Langkah 6.5.2
Ganti dengan dalam rumus untuk periode.
Langkah 6.5.3
Nilai mutlak adalah jarak antara sebuah bilangan dan nol. Jarak antara dan adalah .
Langkah 6.5.4
Bagilah dengan .
Langkah 6.6
Periode dari fungsi adalah sehingga nilai akan berulang setiap derajat di kedua arah.
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat
Langkah 7
Langkah 7.1
Ambil sinus balikan dari kedua sisi persamaan untuk mendapatkan dari dalam sinus.
Langkah 7.2
Sederhanakan sisi kanannya.
Langkah 7.2.1
Nilai eksak dari adalah .
Langkah 7.3
Fungsi sinus negatif pada kuadran ketiga dan keempat. Untuk menemukan penyelesaian kedua, kurangi penyelesaian dari , untuk mencari sudut acuan. Selanjutnya, tambahkan sudut acuan ini ke untuk mencari penyelesaian pada kuadran ketiga.
Langkah 7.4
Sederhanakan pernyataan untuk menentukan penyelesaian yang kedua.
Langkah 7.4.1
Kurangi dengan .
Langkah 7.4.2
Sudut yang dihasilkan dari positif, lebih kecil dari , dan koterminal dengan .
Langkah 7.5
Tentukan periode dari .
Langkah 7.5.1
Periode fungsi dapat dihitung menggunakan .
Langkah 7.5.2
Ganti dengan dalam rumus untuk periode.
Langkah 7.5.3
Nilai mutlak adalah jarak antara sebuah bilangan dan nol. Jarak antara dan adalah .
Langkah 7.5.4
Bagilah dengan .
Langkah 7.6
Tambahkan ke setiap sudut negatif untuk memperoleh sudut positif.
Langkah 7.6.1
Tambahkan ke untuk menentukan sudut positif.
Langkah 7.6.2
Kurangi dengan .
Langkah 7.6.3
Sebutkan sudut-sudut barunya.
Langkah 7.7
Periode dari fungsi adalah sehingga nilai akan berulang setiap derajat di kedua arah.
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat
Langkah 8
Sebutkan semua penyelesaiannya.
, untuk sebarang bilangan bulat
Langkah 9
Langkah 9.1
Gabungkan dan menjadi .
, untuk sebarang bilangan bulat
Langkah 9.2
Gabungkan dan menjadi .
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat