Masukkan soal...
Trigonometri Contoh
Langkah 1
Langkah 1.1
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 1.2
Tambahkan ke kedua sisi persamaan.
Langkah 2
Langkah 2.1
Pindahkan .
Langkah 2.2
Terapkan identitas pythagoras.
Langkah 3
Langkah 3.1
Faktorkan dari .
Langkah 3.2
Faktorkan dari .
Langkah 3.3
Faktorkan dari .
Langkah 4
Jika faktor individu di sisi kiri persamaan sama dengan , seluruh pernyataan akan menjadi sama dengan .
Langkah 5
Langkah 5.1
Atur sama dengan .
Langkah 5.2
Jangkauan dari sekan adalah dan . Karena tidak berada dalam jangkauan ini, maka tidak ada penyelesaian.
Tidak ada penyelesaian
Tidak ada penyelesaian
Langkah 6
Langkah 6.1
Atur sama dengan .
Langkah 6.2
Selesaikan untuk .
Langkah 6.2.1
Tambahkan ke kedua sisi persamaan.
Langkah 6.2.2
Ambil sekan balikan dari kedua sisi persamaan untuk mendapatkan dari dalam sekan.
Langkah 6.2.3
Sederhanakan sisi kanannya.
Langkah 6.2.3.1
Nilai eksak dari adalah .
Langkah 6.2.4
Fungsi sekan positif di kuadran pertama dan keempat. Untuk menghitung penyelesaian kedua, kurangi sudut acuan dari untuk menghitung penyelesaian di kuadran keempat.
Langkah 6.2.5
Kurangi dengan .
Langkah 6.2.6
Tentukan periode dari .
Langkah 6.2.6.1
Periode fungsi dapat dihitung menggunakan .
Langkah 6.2.6.2
Ganti dengan dalam rumus untuk periode.
Langkah 6.2.6.3
Nilai mutlak adalah jarak antara sebuah bilangan dan nol. Jarak antara dan adalah .
Langkah 6.2.6.4
Bagilah dengan .
Langkah 6.2.7
Periode dari fungsi adalah sehingga nilai-nilai akan berulang setiap radian di kedua arah.
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat
Langkah 7
Penyelesaian akhirnya adalah semua nilai yang membuat benar.
, untuk sebarang bilangan bulat
Langkah 8
Gabungkan jawabannya.
, untuk sebarang bilangan bulat