Trigonometri Contoh

Konversi ke Bentuk Trigonometri (1+cos(2y))/(sin(2y))
Langkah 1
Ini adalah bentuk trigonometri dari bilangan kompleks di mana adalah modulusnya dan adalah sudut yang dibuat di bidang kompleks.
Langkah 2
Modulus bilangan kompleks adalah jarak dari asal pada bidang kompleks.
di mana
Langkah 3
Substitusikan nilai-nilai aktual dari dan .
Langkah 4
Temukan .
Ketuk untuk lebih banyak langkah...
Langkah 4.1
Menaikkan ke sebarang pangkat positif menghasilkan .
Langkah 4.2
Terapkan kaidah hasil kali ke .
Langkah 4.3
Kalikan dengan .
Langkah 4.4
Pisahkan pecahan.
Langkah 4.5
Konversikan dari ke .
Langkah 4.6
Sederhanakan pernyataannya.
Ketuk untuk lebih banyak langkah...
Langkah 4.6.1
Bagilah dengan .
Langkah 4.6.2
Tulis kembali sebagai .
Langkah 4.7
Perluas menggunakan Metode FOIL.
Ketuk untuk lebih banyak langkah...
Langkah 4.7.1
Terapkan sifat distributif.
Langkah 4.7.2
Terapkan sifat distributif.
Langkah 4.7.3
Terapkan sifat distributif.
Langkah 4.8
Sederhanakan dan gabungkan suku-suku sejenis.
Ketuk untuk lebih banyak langkah...
Langkah 4.8.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 4.8.1.1
Kalikan dengan .
Langkah 4.8.1.2
Kalikan dengan .
Langkah 4.8.1.3
Kalikan dengan .
Langkah 4.8.1.4
Kalikan .
Ketuk untuk lebih banyak langkah...
Langkah 4.8.1.4.1
Naikkan menjadi pangkat .
Langkah 4.8.1.4.2
Naikkan menjadi pangkat .
Langkah 4.8.1.4.3
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 4.8.1.4.4
Tambahkan dan .
Langkah 4.8.2
Tambahkan dan .
Langkah 4.9
Terapkan sifat distributif.
Langkah 4.10
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 4.10.1
Kalikan dengan .
Langkah 4.10.2
Tulis kembali dalam bentuk sinus dan kosinus.
Langkah 4.10.3
Terapkan kaidah hasil kali ke .
Langkah 4.10.4
Satu dipangkat berapa pun sama dengan satu.
Langkah 4.10.5
Gabungkan dan .
Langkah 4.11
Konversikan dari ke .
Langkah 4.12
Tambahkan dan .
Langkah 4.13
Tulis kembali dalam bentuk faktor.
Ketuk untuk lebih banyak langkah...
Langkah 4.13.1
Tulis kembali suku tengahnya.
Langkah 4.13.2
Susun kembali suku-suku.
Langkah 4.13.3
Faktorkan tiga suku pertama dengan aturan kuadrat sempurna.
Langkah 4.13.4
Tulis kembali sebagai .
Langkah 4.13.5
Perluas menggunakan Metode FOIL.
Ketuk untuk lebih banyak langkah...
Langkah 4.13.5.1
Terapkan sifat distributif.
Langkah 4.13.5.2
Terapkan sifat distributif.
Langkah 4.13.5.3
Terapkan sifat distributif.
Langkah 4.13.6
Sederhanakan dan gabungkan suku-suku sejenis.
Ketuk untuk lebih banyak langkah...
Langkah 4.13.6.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 4.13.6.1.1
Kalikan .
Ketuk untuk lebih banyak langkah...
Langkah 4.13.6.1.1.1
Naikkan menjadi pangkat .
Langkah 4.13.6.1.1.2
Naikkan menjadi pangkat .
Langkah 4.13.6.1.1.3
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 4.13.6.1.1.4
Tambahkan dan .
Langkah 4.13.6.1.2
Kalikan .
Ketuk untuk lebih banyak langkah...
Langkah 4.13.6.1.2.1
Naikkan menjadi pangkat .
Langkah 4.13.6.1.2.2
Naikkan menjadi pangkat .
Langkah 4.13.6.1.2.3
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 4.13.6.1.2.4
Tambahkan dan .
Langkah 4.13.6.2
Susun kembali faktor-faktor dari .
Langkah 4.13.6.3
Tambahkan dan .
Langkah 4.13.7
Tambahkan dan .
Langkah 4.13.8
Faktorkan menggunakan aturan kuadrat sempurna.
Ketuk untuk lebih banyak langkah...
Langkah 4.13.8.1
Periksa apakah suku tengahnya merupakan dua kali hasil perkalian dari bilangan yang dikuadratkan di suku pertama dan suku ketiga.
Langkah 4.13.8.2
Tulis kembali polinomialnya.
Langkah 4.13.8.3
Faktorkan menggunakan aturan trinomial kuadrat sempurna , di mana dan .
Langkah 4.14
Mengeluarkan suku-suku dari bawah akar, dengan asumsi bahwa bilangan riil positif.
Langkah 5
Sudut dari titik pada bidang kompleks adalah tangen balikan dari bagian kompleks per bagian riil.
Langkah 6
Substitusikan nilai-nilai dari dan .