Trigonometri Contoh

Selesaikan untuk x dalam Radian akar kuadrat dari 3cot(x)=1
Langkah 1
Bagi setiap suku pada dengan dan sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Bagilah setiap suku di dengan .
Langkah 1.2
Sederhanakan sisi kirinya.
Ketuk untuk lebih banyak langkah...
Langkah 1.2.1
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 1.2.1.1
Batalkan faktor persekutuan.
Langkah 1.2.1.2
Bagilah dengan .
Langkah 1.3
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 1.3.1
Kalikan dengan .
Langkah 1.3.2
Gabungkan dan sederhanakan penyebutnya.
Ketuk untuk lebih banyak langkah...
Langkah 1.3.2.1
Kalikan dengan .
Langkah 1.3.2.2
Naikkan menjadi pangkat .
Langkah 1.3.2.3
Naikkan menjadi pangkat .
Langkah 1.3.2.4
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 1.3.2.5
Tambahkan dan .
Langkah 1.3.2.6
Tulis kembali sebagai .
Ketuk untuk lebih banyak langkah...
Langkah 1.3.2.6.1
Gunakan untuk menuliskan kembali sebagai .
Langkah 1.3.2.6.2
Terapkan kaidah pangkat dan perkalian eksponen, .
Langkah 1.3.2.6.3
Gabungkan dan .
Langkah 1.3.2.6.4
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 1.3.2.6.4.1
Batalkan faktor persekutuan.
Langkah 1.3.2.6.4.2
Tulis kembali pernyataannya.
Langkah 1.3.2.6.5
Evaluasi eksponennya.
Langkah 2
Ambil kotangen balikan dari kedua sisi persamaan untuk mendapatkan dari dalam kotangen.
Langkah 3
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 3.1
Nilai eksak dari adalah .
Langkah 4
Fungsi kotangen positif di kuadran pertama dan ketiga. Untuk mencari penyelesaian kedua, tambahkan sudut acuan dari untuk mencari penyelesaian di kuadran keempat.
Langkah 5
Sederhanakan .
Ketuk untuk lebih banyak langkah...
Langkah 5.1
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 5.2
Gabungkan pecahan.
Ketuk untuk lebih banyak langkah...
Langkah 5.2.1
Gabungkan dan .
Langkah 5.2.2
Gabungkan pembilang dari penyebut persekutuan.
Langkah 5.3
Sederhanakan pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 5.3.1
Pindahkan ke sebelah kiri .
Langkah 5.3.2
Tambahkan dan .
Langkah 6
Tentukan periode dari .
Ketuk untuk lebih banyak langkah...
Langkah 6.1
Periode fungsi dapat dihitung menggunakan .
Langkah 6.2
Ganti dengan dalam rumus untuk periode.
Langkah 6.3
Nilai mutlak adalah jarak antara sebuah bilangan dan nol. Jarak antara dan adalah .
Langkah 6.4
Bagilah dengan .
Langkah 7
Periode dari fungsi adalah sehingga nilai-nilai akan berulang setiap radian di kedua arah.
, untuk sebarang bilangan bulat
Langkah 8
Gabungkan jawabannya.
, untuk sebarang bilangan bulat