Masukkan soal...
Trigonometri Contoh
Langkah 1
Tambahkan ke kedua sisi persamaan.
Langkah 2
Langkah 2.1
Bagilah setiap suku di dengan .
Langkah 2.2
Sederhanakan sisi kirinya.
Langkah 2.2.1
Batalkan faktor persekutuan dari .
Langkah 2.2.1.1
Batalkan faktor persekutuan.
Langkah 2.2.1.2
Bagilah dengan .
Langkah 3
Ambil akar yang ditentukan dari kedua sisi persamaan untuk menghilangkan eksponen di sisi kiri.
Langkah 4
Langkah 4.1
Tulis kembali sebagai .
Langkah 4.2
Sebarang akar dari adalah .
Langkah 4.3
Kalikan dengan .
Langkah 4.4
Gabungkan dan sederhanakan penyebutnya.
Langkah 4.4.1
Kalikan dengan .
Langkah 4.4.2
Naikkan menjadi pangkat .
Langkah 4.4.3
Naikkan menjadi pangkat .
Langkah 4.4.4
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 4.4.5
Tambahkan dan .
Langkah 4.4.6
Tulis kembali sebagai .
Langkah 4.4.6.1
Gunakan untuk menuliskan kembali sebagai .
Langkah 4.4.6.2
Terapkan kaidah pangkat dan perkalian eksponen, .
Langkah 4.4.6.3
Gabungkan dan .
Langkah 4.4.6.4
Batalkan faktor persekutuan dari .
Langkah 4.4.6.4.1
Batalkan faktor persekutuan.
Langkah 4.4.6.4.2
Tulis kembali pernyataannya.
Langkah 4.4.6.5
Evaluasi eksponennya.
Langkah 5
Langkah 5.1
Pertama, gunakan nilai positif dari untuk menemukan penyelesaian pertama.
Langkah 5.2
Selanjutnya, gunakan nilai negatif dari untuk menemukan penyelesaian kedua.
Langkah 5.3
Penyelesaian lengkap adalah hasil dari bagian positif dan negatif dari penyelesaian tersebut.
Langkah 6
Tulis setiap penyelesaian untuk menyelesaikan .
Langkah 7
Langkah 7.1
Ambil kosinus balikan dari kedua sisi persamaan untuk mendapatkan dari dalam kosinus.
Langkah 7.2
Sederhanakan sisi kanannya.
Langkah 7.2.1
Nilai eksak dari adalah .
Langkah 7.3
Fungsi kosinus positif pada kuadran pertama dan keempat. Untuk menghitung penyelesaian kedua, kurangi sudut acuan dari untuk menemukan penyelesaian pada kuadran keempat.
Langkah 7.4
Kurangi dengan .
Langkah 7.5
Tentukan periode dari .
Langkah 7.5.1
Periode fungsi dapat dihitung menggunakan .
Langkah 7.5.2
Ganti dengan dalam rumus untuk periode.
Langkah 7.5.3
Nilai mutlak adalah jarak antara sebuah bilangan dan nol. Jarak antara dan adalah .
Langkah 7.5.4
Bagilah dengan .
Langkah 7.6
Periode dari fungsi adalah sehingga nilai akan berulang setiap derajat di kedua arah.
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat
Langkah 8
Langkah 8.1
Ambil kosinus balikan dari kedua sisi persamaan untuk mendapatkan dari dalam kosinus.
Langkah 8.2
Sederhanakan sisi kanannya.
Langkah 8.2.1
Nilai eksak dari adalah .
Langkah 8.3
Fungsi kosinus negatif di kuadran kedua dan ketiga. Untuk menghitung penyelesaian kedua, kurangi sudut acuan dari untuk menghitung penyelesaian di kuadran ketiga.
Langkah 8.4
Kurangi dengan .
Langkah 8.5
Tentukan periode dari .
Langkah 8.5.1
Periode fungsi dapat dihitung menggunakan .
Langkah 8.5.2
Ganti dengan dalam rumus untuk periode.
Langkah 8.5.3
Nilai mutlak adalah jarak antara sebuah bilangan dan nol. Jarak antara dan adalah .
Langkah 8.5.4
Bagilah dengan .
Langkah 8.6
Periode dari fungsi adalah sehingga nilai akan berulang setiap derajat di kedua arah.
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat
Langkah 9
Sebutkan semua penyelesaiannya.
, untuk sebarang bilangan bulat
Langkah 10
Gabungkan jawabannya.
, untuk sebarang bilangan bulat