Trigonometri Contoh

Selesaikan untuk x dalam Derajat sin(x)cos(x)-cos(x)=0
Langkah 1
Faktorkan dari .
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Faktorkan dari .
Langkah 1.2
Faktorkan dari .
Langkah 1.3
Faktorkan dari .
Langkah 2
Jika faktor individu di sisi kiri persamaan sama dengan , seluruh pernyataan akan menjadi sama dengan .
Langkah 3
Atur agar sama dengan dan selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 3.1
Atur sama dengan .
Langkah 3.2
Selesaikan untuk .
Ketuk untuk lebih banyak langkah...
Langkah 3.2.1
Ambil kosinus balikan dari kedua sisi persamaan untuk mendapatkan dari dalam kosinus.
Langkah 3.2.2
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 3.2.2.1
Nilai eksak dari adalah .
Langkah 3.2.3
Fungsi kosinus positif pada kuadran pertama dan keempat. Untuk menghitung penyelesaian kedua, kurangi sudut acuan dari untuk menemukan penyelesaian pada kuadran keempat.
Langkah 3.2.4
Kurangi dengan .
Langkah 3.2.5
Tentukan periode dari .
Ketuk untuk lebih banyak langkah...
Langkah 3.2.5.1
Periode fungsi dapat dihitung menggunakan .
Langkah 3.2.5.2
Ganti dengan dalam rumus untuk periode.
Langkah 3.2.5.3
Nilai mutlak adalah jarak antara sebuah bilangan dan nol. Jarak antara dan adalah .
Langkah 3.2.5.4
Bagilah dengan .
Langkah 3.2.6
Periode dari fungsi adalah sehingga nilai akan berulang setiap derajat di kedua arah.
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat
Langkah 4
Atur agar sama dengan dan selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 4.1
Atur sama dengan .
Langkah 4.2
Selesaikan untuk .
Ketuk untuk lebih banyak langkah...
Langkah 4.2.1
Tambahkan ke kedua sisi persamaan.
Langkah 4.2.2
Ambil sinus balikan dari kedua sisi persamaan untuk mendapatkan dari dalam sinus.
Langkah 4.2.3
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 4.2.3.1
Nilai eksak dari adalah .
Langkah 4.2.4
Fungsi sinus positif di kuadran pertama dan kedua. Untuk menemukan penyelesaian kedua, kurangi sudut acuan dari untuk menemukan penyelesaian di kuadran kedua.
Langkah 4.2.5
Kurangi dengan .
Langkah 4.2.6
Tentukan periode dari .
Ketuk untuk lebih banyak langkah...
Langkah 4.2.6.1
Periode fungsi dapat dihitung menggunakan .
Langkah 4.2.6.2
Ganti dengan dalam rumus untuk periode.
Langkah 4.2.6.3
Nilai mutlak adalah jarak antara sebuah bilangan dan nol. Jarak antara dan adalah .
Langkah 4.2.6.4
Bagilah dengan .
Langkah 4.2.7
Periode dari fungsi adalah sehingga nilai akan berulang setiap derajat di kedua arah.
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat
Langkah 5
Penyelesaian akhirnya adalah semua nilai yang membuat benar.
, untuk sebarang bilangan bulat
Langkah 6
Gabungkan jawabannya.
, untuk sebarang bilangan bulat